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Abstract

This paper proposes a novel methodology for identifying the observed factors in a
factor-augmented vector autoregression (FAVAR). Without strong a priori beliefs about
the set of possible models, the complexity of the problem renders traditional Bayesian
model selection techniques infeasible. By contrast, my proposed solution only requires
the estimation of a single model. This makes the process easy to scale in both the cross-
sectional and time series dimensions. Monte Carlo studies show the technique to be
highly effective in small samples, even in the presence of a low signal-to-noise ratio and
missing data. Applications to large datasets of monthly and quarterly U.S. macroe-
conomic variables identify observed factors not normally considered in the FAVAR
literature. The methodology is then used to analyze the asset-pricing model of Fama
and French (1993). I find that their constructed factors for firm size and book-to-
market equity ratio are likely observed components, but excess market return is not.
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1 Introduction

Factor-augmented vector autoregressions (FAVARs) are a popular tool in big data time series

analysis. The central assumption of any factor model is that much of the variation in a large

panel of dependent variables can be explained by a relatively small number of common

components. A standard FAVAR with an intercept is written as

Xt = µX + Λfft + Λyyt + εt, εt ∼ N(0,Σ), (1)

 ft

yt − µy

 = Φ(L)

 ft−1

yt−1 − µy

+ ηt, ηt ∼ N(0,Ω). (2)

Xt is an N × 1 vector of dependent variables with unit variance, ft is an rf × 1 vector of

latent factors, yt is an ry × 1 vector of observed factors, Λf and Λy are matrices of loading

parameters, and εt is an N × 1 vector of error terms. The variables are observed over T

time periods. The common factors ft and yt are assumed to explain all of the covariance

in Xt. The idiosyncratic errors εt are thus assumed to have diagonal covariance matrix

Σ = diag(σ2
1, . . . , σ

2
N). The FAVAR reduces to a multivariate regression when rf = 0 and

a dynamic factor model (DFM) when ry = 0. This specification allows for parsimonious

modeling of high-dimensional data when r = rf + ry << N and serves as an alternative to

highly parameterized large vector autoregressions (VARs).

The FAVAR was originally developed for structural macroeconomic analysis by Bernanke,

Boivin, and Eliasz (2005), who found that adding latent factors to the VAR equation pro-

duced more reasonable impulse response function estimates.1 The authors assumed the

Federal Funds Rate was the only observed factor and did not perform any model comparison

with alternative observed factors. Models with observed factors, though not typically cast

1. See Belviso and Milani (2006); Boivin, Giannoni, and Stevanović (2013); Fernald, Spiegel, and Swanson
(2014); Paccagnini (2017) among others for further detail as well as interesting extensions and applications.
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in terms of an FAVAR, are also common in the asset-pricing literature2. The number of

possible observed factors to consider has grown quite large. Choosing the best subset from

the available “factor zoo” (Cochrane, 2011) is of interest to researchers and investors alike.

There is no existing feasible method for comparing all of the possible FAVAR specifica-

tions, even when r is fixed. Exhaustive model comparison would require estimating millions

of models, even with modestly sized datasets. I propose a solution that only requires the

estimation of a single model. The procedure exploits the fact that any FAVAR has an equiv-

alent representation as a DFM. If an observed factor is modeled as a dependent variable in

a DFM, then the associated error term εit will have true variance σ
2
i = 0. I estimate a DFM

with all observed variables and place a Bayesian variable selection prior on each σ2
i . The

prior is designed to shrink small variances towards 0 while exercising little influence on larger

variances. Model selection is achieved through maximum a posteriori (MAP) estimation.

The identification of observed factors has been addressed solely by the frequentist liter-

ature until this point. The two papers most closely related to this project are Bai and Ng

(2006) and Parker and Sul (2016). Bai and Ng (2006) observe that if we can consistently

estimate the factor space, then any observed factors will be linear combinations of the esti-

mated factors. Their procedure relies on statistical tests in which some candidate variable

is an observed factor under the null hypothesis. This approach is reasonable when the set

of possible observed factors is small, but will encounter problems when the set is large. To

systematically find the correct observed factors in a dataset with many variables, this re-

quires running dozens or hundreds of independent tests and then performing a correction

for multiple hypothesis testing. This method is unlikely to select the true model and may

produce incoherent results, such as concluding there are more observed factors than total

possible factors. Parker and Sul (2016) build upon the work of Bai and Ng (2006) to develop

a criterion for finding a set of candidate observed factors. When combined with a clustering

algorithm, the criterion is effective at finding the set of all possible observed factors. How-

2. Among many others, see Chen, Roll, and Ross, 1986; Fama and French, 1993; Fama and French, 2015.
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ever, this approach is agnostic about choosing between highly correlated candidates. If Xi

is an observed factor and Xj = Xi + εj, where εj has a small variance, the criterion may

conclude that either variable could be an observed factor. Both papers assume a balanced

panel dataset and do not address the case of missing data. My model selection process does

not encounter the same problems.

I apply the procedure to large datasets of monthly and quarterly macroeconomic data,

as well as the asset-pricing data of Fama and French (1993). The analysis of quarterly

macroeconomic data yields surprising results. Rather than selecting the Federal Funds Rate

as an observed factor, the default assumption in the monetary FAVAR literature, the proce-

dure selects the Total Capacity Utilization index. A model of monthly macroeconomic data

selects the spread between the 10-Year Treasury Rate and the Federal Funds Rate as the

only observed factor. Models restricted to the period following the 2007 Financial Crisis find

that employment measures are more likely to be observed factors. I estimate a model with

the same variables as Fama and French (1993). Variables that measure the excess returns

attributable to firm size and book-to-market equity ratio are classified as observed factors,

while the excess return from a market portfolio is not.

The remainder of the paper proceeds as follows. Section 2 recasts the model selection

process as an optimization problem. Section 3 develops an efficient Expectation Maximiza-

tion (EM) algorithm for MAP estimation. Section 4 investigates the performance of the

proposed procedure through Monte Carlo studies. Section 5 applies the new approach to

large macroeconomic and financial datasets, and section 6 concludes. Mathematical proofs

and technical details can be found in the appendix.
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2 The Model Selection Procedure

2.1 Rotation Invariant Likelihood

A perennial issue in factor analysis is that the likelihood is invariant under rotations of the

factor basis. Consider the case of a DFM with likelihood f(X|θ). For any square invertible

matrix A, Λft = ΛA−1Aft. Let F = (f1, . . . , fT ), Λ
∗ = ΛA−1, F ∗ = AF , Φ∗

l = AΦlA
−1,

and Ω∗ = AΩA′. Assuming the first p instances of the factors come from the stationary

distribution, where p is the VAR lag order in (2), we obtain the equality

f(X|θ) =
∫
f(X|F,Λ,Σ)π(F |Φ,Ω)dF =

∫
f(X|F ∗,Λ∗,Σ)π(F ∗|Φ∗,Ω∗)dF ∗ = f(X|θ∗).

(3)

This means that parameter restrictions are required to identify the likelihood. Unfortunately,

a priori restrictions can lead to model misspecification. Identification is usually achieved

through restrictions on an r × r submatrix of Λ. The restrictions are only valid if the true

submatrix is invertible.

2.2 Rewriting the FAVAR as a DFM

If we stack Xt and yt in a single vector, we can then rewrite the FAVAR as a special case of

a DFM:

Xt

yt

 =

µX

µy

+

 Λ

Iry


 ft

yt − µy

+ ε†
t , (4)

ε†
t ∼ N

0,

Σ 0

0 0


 . (5)

Now consider an arbitrary rotation of the factors:
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A

 ft

yt − µy

 = f ∗
t . (6)

The FAVAR can then be written as

f ∗
t = AΦ(L)A−1︸ ︷︷ ︸

Φ∗(L)

f ∗
t−1 + η∗t , η∗t ∼ N(0, AΩA′︸ ︷︷ ︸

Ω∗

), (7)

Xt

yt


︸ ︷︷ ︸

X∗
t

=

µX + Λyµy

µy


︸ ︷︷ ︸

µX∗

+

[Λf Λy]A−1

Ay


︸ ︷︷ ︸

Λ∗

f ∗
t + ε∗t , (8)

ε∗t ∼ N

0,

Σ 0

0 0


 , (9)

where Ay is the last ry rows of A−1. We can thus conclude that any DFM in which some

variances are 0 is equivalent to an FAVAR where those variables are observed factors.

Rather than comparing estimates from different FAVAR specifications. I will estimate

a DFM that nests all possible FAVARs with total number of factors r and lag order p.

Identification is not an issue if your only aim is to determine the observed factors, r, and

p. The elements of Σ do not change when the factor basis is rotated. Since the procedure

I propose makes use of a MAP estimate from a Gaussian state-space model, the posterior

can be optimized using an EM algorithm, which does not require an identified likelihood

to converge to a maximum point. This helps us avoid any model misspecification problems

that can arise from a priori restrictions. The only normalization I assume is Ω = Ir. This

helps to scale identify the factors and facilitates jumping between points of equal probability

to accelerate the EM algorithm. Once MAP estimates are obtained, the researcher is free to

choose his or her preferred identifying restrictions and rotate the factor basis accordingly.
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2.3 Determining the Observed Factors

Let us consider the problem of identifying the observed factors when r and p are known.

The theoretically ideal method would be exhaustive Bayes factor comparisons. However,

the combinatorial complexity of such a procedure requires prohibitively large computing re-

sources even when r is small. One would have to estimate marginal likelihoods for
∑r

ry=0

(
N
ry

)
models. This amounts to over 4 million marginal likelihood estimations in the modest case

of N = 100 and r = 4. Even if one used the Bayesian information criterion (BIC) to approx-

imate the marginal likelihood, the model selection process would take months on a standard

personal computer.

Since any variables with idiosyncratic variances of 0 must be observed factors, a closely

related approach would be to place spike-and-slab priors on the variances. This would take

the form

π(σ2
i ) = (1− ρi)δ0(σ

2
i ) + ρiψ1(σ

2
i ). (10)

While the spike-and-slab prior recasts the problem in the context of a single model, it does

not alleviate the problem of combinatorial complexity. To produce a posterior that is easier

to traverse, let us consider a continuous approximation of the point-mass mixture prior. After

adding a hierarchical prior on the mixing weight and a latent indicator for the components

of the mixture, the prior for σ2
i is expressed as

π(σ2
i |γi) = ψ0(σ

2
i )

1−γiψ1(σ
2
i )

γi , (11)

ψq(σ
2
i ) = αqe

−αqσ2
i , (12)

γi ∼ Bernoulli(ρi), (13)
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ρi ∼ B(a, a). (14)

The spike-and-slab densities are exponential distributions. By setting α0 >> α1 and α1 close

to 0, we can place virtually all of the probability mass of the spike distribution (ψ0) near

0 while placing nearly all of the mass of the slab distribution (ψ1) away from 0. Figure 1

shows the mixture density for increasingly large α0’s and ρ = 0.5. This is equivalent to the

marginal prior after γi and ρi have been integrated out. We can see that this continuous

prior approaches the point-mass mixture prior as α0 → ∞. I employ parameter expansion by

augmenting the prior with the latent indicator variable γi. The latent variable formulation

is amenable to closed-form updates of variance estimates within an EM algorithm.

Parameter estimates are obtained by solving the optimization problem

θ̂MAP = argmaxθπ(θ|X)

= argmaxθf(X|θ)π(θ)

= argmaxθlnf(X|θ) + lnπ(θ).

(15)

Care must be taken when optimizing a model for which some σ̂2
i,MAP = 0. The EM algo-

rithm requires the output from a Kalman smoother, which gives imprecise estimates when

idiosyncratic variances are sufficiently small. I avoid this problem by first estimating a con-

strained model in which σ2
i ≥ 10−15. We can maintain numerical stability with variances

of this size by using a square root Kalman smoother that leverages the QR decomposition

(Tracy, 2022). After termination of the EM algorithm, I check to see if the posterior density

can be increased further by setting any σ̂2
i,MAP < 10−8 to 0. The model with exacts 0’s was

preferred in all estimations.

7



2.4 Selecting the Number of Factors

Before applying the model selection process, we must first know the number of factors. There

has been a great deal of work done with regard to estimating r. Many approaches in the

frequentist literature develop information criteria (Bai and Ng, 2002; Hallin and Lǐska, 2007;

Ahn and Horenstein, 2013). Another approach to estimating r is using an overidentified

model, with more factors than is likely true, and then forcing factor loadings towards 0.

Frequentist methods accomplish this by applying regularization techniques like the LASSO to

factors estimated using Principle Components Analysis (PCA) (Zou, Hastie and Tibshirani,

2006; Witten, Tibshirani and Hastie, 2009). Bayesian solutions typically place hierarchical

shrinkage priors on the loading parameters (Carvalho et al., 2008; Frühwirth-Schnatter and

Lopes, 2009; Knowles and Ghahramani, 2011; Ročková and George, 2016). These methods

pertain to models in which the factors are assumed to be uncorrelated across time. There has

been some recent work that extends the approach to restricted DFMs (McAlinn, Ročková,

and Saha 2018; Luo and Yu, 2021).

Many Bayesian approaches for selecting r are unfortunately ill-suited to the problem at

hand. Methods based on variable selection priors are less effective when the idiosyncratic

variances are very small, which will occur for any observed factors as well as any other

variables that are particularly well-explained by the common components. When continuous

shrinkage priors are used, such as in Ročková and George (2016), very small variances reduce

the variable selection penalty to effectively 0. Another issue arises when the factors are highly

correlated, a situation that is not precluded by the model under consideration. In fact, highly

correlated factors are likely to result when the model is overidentified. Overidentification

does not create the same issue in static factor models because the factors are independent a

priori. Point mass-density priors may be less susceptible to the problem of small variances,

but they are still likely to encounter difficulties with highly correlated factors. Likelihood-

based criteria such as Bayes factors and the Deviance Information Criterion unfortunately

have a tendency to overfit the number of factors (Beyeler and Kaufmann, 2021). While BIC
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performed well in simulation studies, it exhibited the same overfitting property in empirical

applications, continuing to decrease as the number of factors increased. It is for this reason

I instead use the ICp2 criterion of Bai and Ng (2002). It can be computed quickly, has

very good finite sample properties and tends to give reasonable factor estimates for models

calibrated to macroeconomic applications (Stock and Watson, 2016).

2.5 Lag Length Selection

Conditional on the number of factors, I use BIC to select p. Calculation of the BIC is not

obvious in this case because I have chosen to maximize the unidentified likelihood, which

attains a maximum not at a single point but at a ridge. The derivation of the BIC requires

the maximum to be unique for the Laplace approximation to be valid, meaning BIC can

only be calculated for an identified model. However, the maximum likelihood value found

for the unidentified likelihood will correspond to the maximum likelihood of any model with

correct identifying restrictions (assuming there is at least one nonsingular r × r submatrix

in Λ̂MLE). We can thus use the maximum likelihood from the unidentified model and the

penalty from the identified model to compute

BIC = −2lnf(X|θ̂MLE) + lnT (N(r + 2) + pr2 − r(r − 1)/2). (16)

3 A Parameter-Expanded Expectation/Conditional Max-

imization Either Algorithm

Our goal is to maximize π(θ|X) ∝
∫
f(X|F, θ)π(F |θ)π(θ)dF . Maximization of the posterior

is achieved using a variant of the EM algorithm. While the posterior can be maximized with

a conventional EM algorithm, convergence is considerably slower. I instead use a combina-

tion of two EM variants with faster convergence properties: the Expectation/Conditional
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Maximization (ECME) algorithm (Liu and Rubin, 1994) and the Parameter-Expanded Ex-

pectation Maximization (PX-EM) algorithm (Liu, Rubin, and Wu, 1998). The basic EM

algorithm is an iterative process in which one can find parameter updates that monotoni-

cally increase the value of an integrated density, such as π(θ|X), by maximizing the posterior

expectation of the full data density (Dempster, Laird, and Rubin, 1977). The parameter

updates take the form

θn = argmaxθE[lnf(X|F, θ) + lnπ(F |θ)|X, θn−1] + lnπ(θ) = argmaxθQ(θ|θn−1). (17)

3.1 The PX-EM Algorithm for A DFM

The PX-EM algorithm exploits the rotational invariance of the likelihood. The proposed

algorithm proceeds by first maximizing Q(θ|θn−1) with respect to θ∗ = {Λ∗,Φ∗,Ω∗,Σ}. We

then take AL
n to be the lower triangular Cholesky factor of Ω∗

n and set Λn = Λ∗
nA

L
n and

Φl,n = AL
n
−1
Φ∗

l,nA
L
n for each lag l. By adopting improper priors for Λ and Φ, we obtain

a posterior that is also rotation invariant. The priors for Λ and Φ are π(Λ) ∝ 1, and

π(Φ) ∝ 1{Φ ∈ A}, where A is the region of the parameter space for which the roots of the

VAR polynomial lie outside the unit circle. The main advantage of improper priors is that

they are rotation invariant, which will make the posterior easier to traverse. Improper priors

can create convergence issues in Markov Chain Monte Carlo (MCMC) estimation, but they

are not a problem in MAP estimation. The sequence of density ordinates generated by the

EM updates will still converge to a stationary point (Wu, 1983). Any solution found by

optimization is also a solution under an appropriately diffuse Uniform prior. Diffuse proper

priors are unlikely to impact posterior inference for Σ, but they do create difficulties for

optimization. One may be inclined to choose diffuse semiconjugate priors such as π(Λi) =

fN(Λi|0, νΛIr) and π(Φ) ∝ 1{Φ ∈ A}
∏

i,l fN(Φil|0, νΦIr). Such priors do little to identify

the posterior because they are invariant under orthonormal rotations as well as sign and
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order permutations. However, they are not invariant under oblique rotations such as AL, so

we can no longer use the PX-EM algorithm. Proper priors merely restrict the modes of the

posterior to a smaller ridge while making the parameter space more difficult to explore.

The original EM algorithm for maximum likelihood estimation of a DFM can be found in

Watson and Engle (1983). I adapt their algorithm to account for the variable selection prior

on Σ and the estimation of Ω∗. Details of the PX-EM algorithm are given in Algorithm 1.

3.2 The Expectation/Conditional Maximization Either Algorithm

for a DFM

The algorithm described in the previous section has faster convergence properties than the

standard EM algorithm, but still encounters some difficulties maximizing the posterior, espe-

cially with respect to Σ, the parameters of greatest interest. To overcome this issue, I occa-

sionally supplement the iterations of the PX-EM algorithm with an iteration from an ECME

algorithm. The ECME algorithm works by iteratively maximizing functions of parameter

blocks that are conditioned on the values of the remaining parameters from the last iteration.

Better convergence properties are obtained by allowing the functions to be either conditional

Q functions, such as E[lnπ(θ1|X,F, θ2,n−1)|X, θn−1] or conditional log integrated densities,

such as lnπ(θ1|X, θ2,n−1). For the problem at hand, I choose to update ρ using a conditional

Q function and update the remaining parameters with conditional posterior densities. All

of the conditional maximizations must be unique in order for the sequence of posterior ordi-

nates generated by the ECME algorithm to converge (Liu and Rubin, 1994). The posterior

distribution obviously does not have a unique maximum, but the conditional distributions do

when the parameters are grouped by observation equation (1) and state equation (2). One

option for an ECME iteration would be to first maximize lnπ(Λ,Σ|X,Φn−1,Ω = Ir) with

respect to Λn and Σn, then maximize lnπ(Φ|X,Λn,Σn,Ω = Ir) with respect to Φn. I instead

modify this step with parameter expansion by first maximizing lnπ(Λ∗,Σ|X,Φn−1,Ω = Ir)

with respect to Λ∗
n and Σn, then maximizing lnπ(Φ∗,Ω∗|X,Λ∗

n,Σn) with respect to Φ∗
n and
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Ω∗
n. The solutions are then rotated back to the scale identified model, as in the PX-EM

algorithm. Details are given in Algorithm 2. All maximizations are done numerically us-

ing the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Computation time is de-

creased by using the closed form solution for the gradient that results from the identity

∇lnπ(θn|X) = ∇Q(θn|θn) (Ruud, 1991).

3.3 Approximations to the Stationary Likelihood

Working with the stationary likelihood is theoretically ideal, but presents several challenges.

Maximization of Q(θ|θn) with respect to the VAR parameters must be done numerically, as

no closed form solutions exist. Let us consider the state equation when it is rewritten from

a V AR(p) equation to a V AR(1) equation. Let gt = (f ′
t , f

′
t−1, . . . , f

′
t−p+1)

′.

gt = Bgt−1 +

 ηt

0r(p−1)×1

 (18)

Rather than work with the stationary variance of the factor process, I will instead approx-

imate the stationary likelihood by assuming the first p presample instances of the factors

follow the distribution

g0 ∼ N(0, νg0Ipr). (19)

Integration over these presample instances of ft yields a distribution for the first p instances

of ft of the form

gp ∼ N(0,Ωg + νg0B
pBp′ +

p−1∑
j=1

BjΩgB
j ′), Ωg =

Ω
0r(p−1)

 . (20)

This functions as an approximation to the stationary distribution. The approximation could

be made arbitrarily accurate by making the number of presample factors τ sufficiently large.

As τ → ∞, the marginal covariance matrix of gp will converge to the stationary covariance
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matrix P0. However, such an approach will drastically reduce the efficiency of the EM al-

gorithm. As τ increases, the curvature of Q(θ|θn) increases, leading to smaller steps being

taken in each parameter update. There is likely a more optimal choice of τ . A researcher

may run a preliminary algorithm with a small number of iterations, then select his or her

preferred τ by choosing a number such that ||P0,τ − P0|| < m, where m is a positive tuning

parameter, || · || is a matrix norm, and P0,τ is the covariance matrix of gp for a given τ . Al-

ternatively, one could increase τ until the convergence time of the algorithm begins to suffer.

While these approximations greatly increase the efficiency of the algorithm, the likelihood

is no longer rotation invariant. The parameter-expanded algorithms I have developed are

thus no longer guaranteed to produce updates that monotonically increase the likelihood.

One way to make the algorithm monotonic is to only perform rotations if they increase

the posterior density and just perform regular EM updates otherwise. Another option is to

only do parameter-expanded steps for a set number of iterations, then switch to a basic EM

algorithm. Despite the loss of monotonicity, any fixed points of the parameter-expanded

algorithms will also be fixed points of the basic EM algorithm. Non-monotonic updates were

not an issue in applications to simulated or real data, while convergence was markedly faster.

A third option, should one wish to work with the exact stationary likelihood, is to only use

ECME steps for updating the parameters of the state equation. Gradient-based methods for

this problem require care. Calculation of the numerical gradient requires many runs of either

a Kalman filter or a precision-based method for obtaining the integrated likelihood, as well

as many high-dimensional matrix inversions to calculate the stationary variance. A precise

approximation of the gradient can be computed in significantly less time by augmenting the

state vector with many presample factors and using the fact that ∇lnπ(θn|X) = ∇Q(θn|θn)

(Ruud, 1991). Justification for this approach is given by Proposition 1.

Proposition 1

Let Qτ−p(θ|θn) ≡ E[lnπ(X,F, f0, f−1, . . . , f−τ+p+1, θ|f−τ+p, . . . , f−τ+1)|X, θn] and assume
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θn is an interior point of the parameter space.

lim
τ→∞

∇Qτ−p(θn|θn) = ∇lnπ(θn|X).

Proof in Appendix.

The benefit of this approach is that it only requires one matrix inversion and one Kalman

smoother run, as opposed to many matrix inversions and Kalman filter runs. One only has

to work with the conditional elements of the likelihood, so the gradient is available in closed

form. This result is also applicable to stationary VARs and vector autoregressive moving

average models. It could be used for maximizing the likelihoods of these models or for

efficient simulation from the posterior distribution using Hamiltonian Monte Carlo, which is

an area of active research (Heaps, 2023; Binks et al., 2023).

3.4 Specification of αq

α1 should be set so as to have minimal influence on variance estimates. I adopt the conven-

tion of α1 = 0.01 in all estimations. Optimal specification of α0 is not obvious. Values that

are too small will not impose sufficient shrinkage on small variances. However, setting α0

too high means that the EM algorithm is unlikely to assign significant weight to the spike

component of the prior, and the resulting estimates will be close to the maximum likeli-

hood estimates. Rather than try to find a single optimal α0, I adopt the dynamic posterior

exploration approach developed by Ročková and George (2016). The authors, drawing on

concepts from deterministic annealing, estimate a series of models with increasingly pro-

nounced spike distributions. This is done by using a ladder of increasing spike parameters

α0 ∈ I = {α1
0, α

2
0, . . . , α

L
0 }. α1 is held constant. Small values of α0 produce a flatter poste-

rior density that is easier to traverse. As α0 increases, the posterior becomes spikier. Each

estimation is initialized with the MAP estimates from the previous estimation. This “warm
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start” approach makes the global mode easier to find. The intersection point of the spike

and slab densities is given by δ(α1, α0, ρ) = 1
α0−α1

ln
(

α0

α1

1−ρ
ρ

)
. The sequence I is defined

implicitly by the sequence δ(α1, α0, ρ = .5) ∈ Iδ = {δ1, δ2, . . . , δL}. I use the sequence

Iδ = {.5, .25, .1, .05, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7} for all estimations.

3.5 Missing data

It is rare for a researcher to be blessed with a balanced panel of data. Very often variables

are not available for the entire sample period. It may be that they were only recorded after

a certain date or were eventually discontinued. It could also be the case that certain entries

are intentionally trimmed by the researcher to control for outliers. Missing data represent

a major issue in the frequentist literature when factors are estimated with PCA. Missing

values must be imputed with a consistent estimator (Stock and Watson, 2002; Jin, Miao,

and Su, 2021). Likelihood-based method do not have the same problem. One only has to

restrict the vector of dependent variables in each period to those with non-missing values.

The Kalman smoother and EM updates can proceed with only minor modifications. Full

descriptions of the modified algorithms for missing data can be found in the appendix.

I adjust the variance selection prior to account for differing sample sizes in the presence

of missing data. Using the same α0 and α1 for every time series would disproportionately

penalize the variances of variables with many missing values. Let Ti be the number of time

periods for which Xit is observed. The variable-specific hyperparameters are then defined as

αiq ≡ Ti

T
αq. The correction term Ti

T
ensures that, conditional on γi, the prior has the same

influence on each σ2
i .

4 Monte Carlo Studies

This section presents the results of various Monte Carlo studies. In each simulation, the

loadings are randomly generated according to Λij ∼ N(0, 1). I consider the case of p = 1
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lags. Φ is randomly generated using its eigendecomposition Φ = V DV −1. The elements of

the eigenvector matrix are distributed Vjj′ ∼ U(−1, 1) and the eigenvalues are distributed

Djj ∼ U(.4, .6). Ω = ωIr. ω is chosen such that Var(Λift) = r.3I first examine datasets

with every possible combination of N , T , and r for which N ∈ {40, 60, 100, 200}, T ∈

{50, 100, 150, 200, 250}, and r ∈ {2, 4, 6}. In each case, the number of observed and latent

factors are equal: rf = ry = r/2. The factors are simulated by drawing the first p instances

from the stationary distribution and then iterating the data generating process forward

through time. Each study analyzes 100 simulated datasets.

The first simulation study assumes a balanced panel and σ2
i = r. The results can be seen

in Table 1. The entries give the proportion of datasets for which the procedure correctly

identified the true observed factors. The proposed approach is quite good at identifying the

observed factors in most cases. The one noticeable limitation is that results suffer when N

and T are small and r is large. This is hardly surprising, as we are asking a lot of the model

and not providing sufficient data. Thankfully, the success rate is quite high for combinations

of N and T that we are likely to encounter in practice.

Table 2 gives the results of a simulation study that uses the exact same parameters and

factors as Table 1, only the idiosyncratic variance is now set to σ2
i = 2r. We observe a slight

decrease in accuracy for small values of N and T . This is to be expected because the signal-

to-noise ratio has decreased and the factors will not be estimated as precisely. However, we

see no noticeable drop in accuracy for N ≥ 60 and T ≥ 100.

Tables 3 and 4 give the results of Monte Carlo studies in which σ2
i = r and a proportion

pmiss of the data is missing. The values considered are pmiss = 0.05, 0.1. There appears to

be no substantive difference between the results with missing data and the results with a

balanced panel for N ≥ 60 and T ≥ 100.

3. This is done by first calculating the stationary covariance matrix P0 of a process with transition pa-
rameters Φ and covariance matrix Ω = Ir. Let C be the lower Cholesky factor of P0 such that P0 = CC ′.
The covariance matrix of innovations is then rescaled to Ω = r

||vech(C)||22
Ir
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5 Applications

5.1 Quarterly Macroeconomic Data

This section applies the model selection procedure developed above to the FRED-QD dataset

(McCracken and Ng, 2020). For the first application, the dataset consists ofN = 246 macroe-

conomic variables observed at quarterly intervals. Observations begin in 1959:Q3 and end

in 2023:Q1. 38 of the variables were not recorded until midway through the sample period.

Variables were transformed to be approximately stationary using the recommended trans-

formation codes of the authors, and then standardized to have unit variance. I performed

outlier detection using the same criterion as McCracken and Ng (2020). Any observations

that deviated from the sample median by more than ten interquartile ranges were classified

as outliers and treated as missing. Initial factor estimates were obtained by replacing missing

values with 0 and then using PCA. Jin, Miao, and Su (2021) show that this is a consistent

estimator of the true factor space. I analyzed the full sample period as well as the subsam-

ples 1959:Q3 - 2007:Q3 and 2007:Q4 - 2023:Q1. The sample was partitioned to examine

any structural changes that may have occurred after the 2007 financial crisis. The outlier

classification criterion detected 90 outliers in the full sample, 5 outliers in the pre-financial

crisis subsample, and 109 outliers in the post-financial crisis subsample. The ICp2 criterion

selected 8 factors for the full sample period and 6 factors for each of the subsamples.

As can be seen from Table 5, Capacity Utilization: Total Industry (TCU) is selected

as an observed factor for both the full sample and pre-2007 estimations. TCU is an index

that measures the percentage of potential feasible output that is being produced. This is a

surprising but not unreasonable finding. Capacity utilization has long been recognized as a

leading indicator for inflation and business cycles (Corrado and Mattey, 1997). That TCU

was selected demonstrates the necessity of being able to incorporate missing data. TCU

was not recorded until 1967:Q1. The existing frequentist methods require a balanced panel

dataset, and thus would not have been able to detect this relationship over the periods con-
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sidered. Another advantage of the Bayesian approach is that unobserved values of observed

factors can be imputed naturally using the output from the Kalman smoother. Figure 2

shows the precise estimates that are obtained for the period 1959:Q3 - 1968:Q4 using this

method. TCU is not selected in the post-2007 estimation. With this in mind, the behavior

of TCU does seem to be different before and after the financial crisis. Capacity utilization

tends to peak in the middle of expansions prior to 2007. The index is already declining prior

to the onset of recessions during this period. The inter-recession shape of TCU appears

different after 2007. It is approximately level during 2007 and only starts to decline after the

2008 recession has already begun. Estimates of all 8 factors from the full sample estimation

are plotted in Figure 3. One can see that estimates of factor 5 are nearly identical to a one

period lag of TCU. This suggests that the true Ω might be of reduced rank (Bai and Ng,

2007). It also indicates that TCU is not only an important driver of the economy, but its

impact is also persistent.

5.2 Monthly Macroeconomic Data

This sections analyzes the FRED-MD dataset (McCracken and Ng, 2016). It consists of

N = 127 monthly macroeconomic variables over the period 1959:3-2023:6. The variables are

transformed using the authors’ recommended transformations and standardized to have unit

variance. Outliers are identified and removed using the criterion previously discussed. As

with the quarterly data, I analyze the full sample, as well as pre- and post-financial crisis

subsamples. Results are give in Table 6.

The only variable identified as an observed factor in the full sample estimation is 10-Year

Treasury Constant Maturity Minus Federal Funds Rate (T10YFFM). This is very similar

to measures of the slope of the yield curve, which has been studied for its relationship to

business cycles. Figure 4 plots T10YFFM along with NBER recession dates. We can see that

T10YFFM often turns negative near the peak of an expansion and then sharply increases

during recessions. The pre-financial crisis estimation selects a related variable: Moody’s Sea-
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soned Baa Corporate Bond Minus Federal Funds Rate (BAAFFM). The correlation between

T10YFFM and BAAFFM during this period is 0.94, so the relationship between BAAFFM

and business cycles is nearly identical. The correlation between the two variables drops to

0.89 in the post-2007 subsample. One possible reason that T10YFFM is selected in the full

sample estimation is that the Federal Reserve began targeting the yield curve directly after

the financial crisis.

While estimations using monthly and quarterly data produce differing results in the

pre-financial crisis subsamples, there is some overlap in the selected observed factors for

the post-financial crisis subsamples. They both select All Employees: Service-Providing

Industries, along with one other employment measure. The importance of service sector

employment may stem from its correlation with the impacts of the COVID-19 pandemic.

5.3 Fama-French Portfolio Data

I will now use the model selection process to investigate the asset-pricing model of Fama

and French (1993). The authors extend the capital asset pricing model to include factors

that measure the excess returns attributable to firm size and book-to-market equity ratio

(BE/ME). The Fama-French three factor model is given by

Xit = Rit −Rf
t = β0 + β1i(R

m
t −Rf

t ) + β2iSMBt + β3iHMLt + εit, (21)

where Rit is the return on portfolio i, Rm
t is the return on a market portfolio, Rf

t is the

risk-free return, SMBt is the firm size factor, and HMLt is the BE/ME factor. I estimate

models for a dataset that includes the three Fama-French factors, their measure of the risk-

free rate, and the excess returns from 100 portfolios. The portfolios are the intersection of 10

portfolios organized by deciles of firm size and 10 portfolios organized by deciles of BE/ME.

The data was collected from Kenneth French’s website 4. Estimating such a model allows us

4. See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/det 100 port sz.html

for portfolio returns and http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html
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to test whether the 3 factor specification is supported by the data. Factor observations and

incomplete portfolio data are available for the period 1926:7 - 2023:6. I estimated a model

for the full sample period as well as a number of subsamples. The subsamples include the

time periods considered by Bai and Ng (2006) as well several others. The time periods not

previously examined are the interwar period of 1926:7-1945:8, the Bretton Woods period of

1945:9-1972:12, the pre-financial crisis period of 1997:1-2007:9, and the post-financial crisis

period of 2007:10-2023:6. Previous studies only examined the validity of the three factor

model after 1960 and did not include all 100 portfolios. Researchers had to delete several

portfolios as well as many time periods because their methods required a balanced panel.

Results are given in Table 7.

The importance of BE/ME is quite stable. It is selected as an observed factor in the full

sample estimation as well as every subsample estimation except for 1973:1-1987:12. Firm

size is selected in the full sample estimation, but not in the subsamples for 1973:1-1987:12,

1988:1-1996:12, 1997:1-2007:9, and 1960:1-1996:12. A surprising result is the selection of the

portfolio of firms in the tenth deciles of size and BE/ME in 2 subsamples. However, this

result should be treated skeptically because there are very few observations of the variable

in these subperiods, so there is a good chance of overfitting. The most glaring result is

that market excess return is not selected in any estimation. Although the market variable

is not selected, we should not interpret this as evidence that market return plays no role in

portfolio returns. The estimated variance of the idiosyncratic error for the market variable

is less than 0.01 in all but two of the estimations. This suggests that excess market return or

some closely related variable is a fundamental factor, but it is not perfectly observed. Figure

6 plots the market variable over the entire sample period along with its fitted values. We

can see that there is very little difference between the two. A more surprising result is the

occasional selection of the risk-free return as an observed factor. This suggests that excess

returns depend on Rf
t in a way that is not simply a function of their dependence on excess

for the factors.
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market return. It is important to note that the two time periods in which Rf
t is selected

include the period in the 1970s and early 1980s when interests rates were extremely volatile.

6 Conclusion

I proposed a Bayesian shrinkage prior for identifying observed factors in FAVARs. The prior

allows us to recast a high-dimensional model selection process as an optimization problem.

The procedure has very good small sample properties. Model selection accuracy was virtually

100% in simulated datasets of realistic size. The method yielded interesting results when

applied to macroeconomic and financial data. The Total Capacity Utilization index was the

only observed factor detected in a large dataset of quarterly U.S. macroeconomic variables.

The spread between the 10-Year Treasury Constant Maturity Rate and the Federal Funds

Rate was the only observed factor detected for monthly data. Finally, I used the model

selection procedure to test the assumptions of the Fama and French (1993) asset-pricing

model. The variables constructed for firm size and BE/ME were often selected as observed

factors, but excess market return was not.

There are many avenues for further research. While the approach of this paper seeks to

find the most likely model, it may be the case that there are multiple competing models with

significant posterior probabilities. MCMC would be the appropriate means of estimation for

this end. This model assumes homoskedastic Normal errors, which is unlikely to be realistic

in macroeconomic and financial data. One could incorporate errors with stochastic volatility

into the state equation as well as the observation equations. Allowing for stochastic volatility

in the observation equations permits the possibility of the observed factors changing over

time, which is a perfectly reasonable hypothesis.
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shocks in a data-rich environment.” FRB of New York Staff Report, no. 615.

22

https://arxiv.org/abs/2307.05708


Carvalho, Carlos M., Jeffrey Chang, Joseph E. Lucas, Joseph R. Nevins, Quanli Wang, and

Mike West. 2008. “High-Dimensional Sparse Factor Modeling: Applications in Gene

Expression Genomics.” Journal of the American Statistical Association 103 (484): 1438–

1456.

Chen, Nai-Fu, Richard Roll, and Stephen A. Ross. 1986. “Economic Forces and the Stock

Market.” The Journal of Business 59 (3): 383–403.

Cochrane, John H. 2011. “Presidential Address: Discount Rates.” The Journal of Finance

66 (4): 1047–1108.

Corrado, Carol, and Joe Mattey. 1997. “Capacity Utilization.” Journal of Economic Per-

spectives 11, no. 1 (March): 151–167.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood from Incom-

plete Data Via the EM Algorithm.” Journal of the Royal Statistical Society: Series B

(Methodological) 39 (1): 1–22.

Fama, Eugene F., and Kenneth R. French. 1993. “Common risk factors in the returns on

stocks and bonds.” Journal of financial economics 33 (1): 3–56.

. 2015. “A five-factor asset pricing model.” Journal of Financial Economics 116 (1):

1–22.

Fernald, John G, Mark M Spiegel, and Eric T Swanson. 2014. “Monetary policy effectiveness

in China: Evidence from a FAVAR model.” Journal of International Money and Finance

49:83–103.
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Figure 1: Spike-and-slab Priors for σ2
i
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Define f̂t ≡ E[ft|X, θn], F̂ ≡ (f̂1, . . . , f̂T )
′, P̂ ≡

∑
t E[(ft − f̂t)(ft − f̂t)

′|X, θn], gt =

(f ′
t , f

′
t−1, . . . , f

′
t−p)

′, ĝt = E[gt|X, θn], Ĝ ≡ (ĝ0, . . . , ĝT−1)
′, P̂g ≡

∑
t E[(gt−1 − ĝt−1)(gt−1 −

ĝt−1)
′|X, θn], Ĉ ≡

∑
t E[(ft − f̂t)(gt−1 − ĝt−1)

′|X, θn], γ̂i = Pr(γi = 1|X, θn). All conditional

moments related to the factors are directly available from the output of a Kalman smoother in

which the state vector has been augmented to include an additional lag of ft. The calculation

of γ̂i follows from a straightforward application of Bayes’ formula.

Algorithm 1 PX-EM Algorithm

while lnf(X|θn−1) + lnπ(θn−1)− (lnf(X|θn−1) + lnπ(θn−1)) > tolerance level do
E Step:
Run a Kalman smoother to obtain F̂ , Ĝ P̂ , Ĉ, and P̂g.
for 1 ≤ i ≤ N do

γ̂i = (1 +
ρi,n−1

1−ρi,n−1

α1

α0
exp((α0 − α1)σ

2
i,n−1))

−1.

end for

M Step:
Λ∗

n = X ′F̂ (F̂ ′F̂ + P̂ )−1

for 1 ≤ i ≤ N do
SSi =

∑
t(Xit − Λ∗

i,nf̂t)
2 + Λ∗

i,nP̂Λ
∗′
i,n

α∗
i = (1− γ̂i)α0 + γ̂iα1

σ2
i,n = SSi

1
2
(T+

√
T 2+2α∗

i SSi)

ρi,n = γ̂i+1−a
2a−1

end for
Φ∗

n = (Φ∗
1,n, . . . ,Φ

∗
p,n) = (F̂ ′Ĝ+ Ĉ)(Ĝ′Ĝ+ P̂g)

−1

Ω∗
n = T−1(

∑
t(f̂t − Φ∗ĝt)(f̂t − Φ∗ĝt)

′ + Φ∗P̂gΦ
∗′ − Φ∗Ĉ ′ − ĈΦ∗′)

Rotation Step:
Calculate AL

n , the lower Cholesky factor of Ω∗
n.

Λn = Λ∗
nA

L
n

for 1 ≤ l ≤ p do
Φl,n = AL

n
−1
Φ∗

l,nA
L
n

end for
end while
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Algorithm 2 PX-ECME Algorithm

while lnf(X|θn−1) + lnπ(θn−1)− (lnf(X|θn−1) + lnπ(θn−1)) > tolerance level do
E Step:
for 1 ≤ i ≤ N do

γ̂i = (1 +
ρi,n−1

1−ρi,n−1

α1

α0
exp((α0 − α1)σ

2
i,n−1))

−1.

end for

M Step:
for 1 ≤ i ≤ N do

ρi,n = γ̂i+1−a
2a−1

end for
{Λ∗

n,Σ} = argmaxΛ∗,Σlnπ(Λ,Σ|X, ρn,Φn−1,Ω = Ir)
{Φ∗

n,Ω
∗
n} = argmaxΦ∗

n,Ω
∗
n
lnπ(Φ∗,Ω∗|X, ρn,Λ∗

n,Σn)

Rotation Step:
Calculate AL

n , the lower Cholesky factor of Ω∗
n.

Λn = Λ∗
nA

L
n

for 1 ≤ l ≤ p do
Φl,n = AL

n
−1
Φ∗

l,nA
L
n

end for
end while

Table 1: Proportion of Models Correctly Identified, σ2
i = r

N T rf = ry = 1 rf = ry = 2 rf = ry = 3
40 50 0.99 0.76 0.2
60 50 1.00 0.96 0.66
100 50 1.00 1.00 0.97
200 50 1.00 1.00 1.00
40 100 1.00 1.00 0.88
60 100 1.00 1.00 0.97
100 100 1.00 1.00 1.00
200 100 1.00 1.00 1.00
40 150 1.00 1.00 1.00
60 150 1.00 1.00 1.00
100 150 1.00 1.00 1.00
200 150 1.00 0.99 1.00
40 200 1.00 1.00 1.00
60 200 1.00 1.00 1.00
100 200 1.00 1.00 1.00
200 200 1.00 1.00 1.00
40 250 1.00 0.99 1.00
60 250 1.00 1.00 1.00
100 250 0.99 1.00 1.00
200 250 1.00 1.00 1.00
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Table 2: Proportion of Models Correctly Identified, σ2
i = 2r

N T rf = ry = 1 rf = ry = 2 rf = ry = 3
40 50 0.93 0.41 0.09
60 50 0.99 0.77 0.31
100 50 1.00 1.00 0.89
200 50 1.00 1.00 0.99
40 100 1.00 0.99 0.59
60 100 1.00 1.00 0.96
100 100 1.00 1.00 1.00
200 100 1.00 1.00 1.00
40 150 1.00 0.99 0.95
60 150 1.00 1.00 1.00
100 150 1.00 0.99 1.00
200 150 0.97 1.00 1.00
40 200 1.00 1.00 1.00
60 200 1.00 0.99 0.99
100 200 1.00 1.00 0.99
200 200 1.00 1.00 0.99
40 250 1.00 1.00 1.00
60 250 1.00 1.00 0.99
100 250 1.00 0.99 1.00
200 250 0.99 0.99 1.00

30



Table 3: Proportion of Models Correctly Identified, σ2
i = r, pmiss = 0.05

N T rf = ry = 1 rf = ry = 2 rf = ry = 3
40 50 0.98 0.58 0.16
60 50 1.00 0.96 0.49
100 50 1.00 0.99 0.99
200 50 1.00 1.00 1.00
40 100 1.00 0.99 0.88
60 100 1.00 1.00 1.00
100 100 1.00 1.00 1.00
200 100 1.00 1.00 1.00
40 150 1.00 1.00 0.99
60 150 1.00 1.00 1.00
100 150 0.99 1.00 0.99
200 150 1.00 1.00 1.00
40 200 1.00 1.00 0.99
60 200 1.00 1.00 1.00
100 200 1.00 1.00 1.00
200 200 0.99 1.00 1.00
40 250 1.00 1.00 1.00
60 250 1.00 1.00 1.00
100 250 1.00 1.00 1.00
200 250 1.00 0.99 0.99
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Table 4: Proportion of Models Correctly Identified, σ2
i = r, pmiss = 0.1

N T rf = ry = 1 rf = ry = 2 rf = ry = 3
40 50 0.9 0.46 0.03
60 50 0.99 0.88 0.23
100 50 1.00 1.00 0.88
200 50 1.00 1.00 1.00
40 100 1.00 0.96 0.69
60 100 1.00 1.00 0.99
100 100 1.00 1.00 1.00
200 100 1.00 1.00 1.00
40 150 1.00 1.00 0.98
60 150 1.00 1.00 1.00
100 150 1.00 1.00 0.99
200 150 1.00 1.00 1.00
40 200 1.00 1.00 0.99
60 200 1.00 1.00 1.00
100 200 1.00 1.00 1.00
200 200 1.00 1.00 1.00
40 250 1.00 1.00 1.00
60 250 1.00 1.00 1.00
100 250 1.00 1.00 1.00
200 250 0.99 0.99 1.00

Table 5: Likely Observed Factors in the U.S. Economy, Quarterly Data

Period N T r y
1959:Q3-2023:Q1 246 255 8 Capacity Utilization: Total Industry
1959:Q3-2007:Q3 246 193 6 Capacity Utilization: Total Industry
2007:Q4-2023:Q1 246 62 6 Business Sector: Real Output

All Employees: Service-Providing Industries
All Employees: Goods-Producing Industries
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Figure 2: Total Capacity Utilization (Observed and Imputed)

Notes: The shaded region around the imputed values of TCUt is a 95% credible interval. The variance

of TCUt is available directly from the Kalman smoother.
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Figure 3: Factor Estimates from FRED-QD

Notes: The shaded region around the estimated values of fjt is a 95% credible interval. The variance of

fjt is available directly from the Kalman smoother.
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Table 6: Likely Observed Factors in the U.S. Economy, Monthly Data

Period N T r y
1959:3-2023:6 127 772 7 10-Year Treasury Constant Maturity

Minus Federal Funds Rate
1959:3-2007:9 127 583 7 Moody’s Seasoned Baa Corporate Bond

Minus Federal Funds Rate
2007:10-2023:3 127 189 7 All Employees, Total Nonfarm

All Employees: Service-Providing Industries
Consumer Price Index for All Urban Consumers:

All Items in U.S. City Average
S&P 500

Figure 4: 10-Year Treasury Constant Maturity Minus Federal Funds Rate
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Figure 5: Factor Estimates from FRED-MD

Notes: The shaded region around the estimated values of fjt is a 95% credible interval. The variance of

fjt is available directly from the Kalman smoother.
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Table 7: Likely Observed Factors in Monthly Fama-French Portfolios

Period N T r observed factors
1926:7-2023:6 104 1164 4 Firm Size

Book-to-Market Equity Ratio
1926:7-1945:8 104 230 4 Firm Size

Book-to-Market Equity Ratio
Portfolio of firms in the tenth deciles of size and BE/ME

1945:9-1972:12 104 328 3 Firm Size
Book-to-Market Equity Ratio

1973:1-1987:12 104 170 4 Risk-Free Return
1988:1-1996:12 104 108 3 Book-to-Market Equity Ratio
1997:1-2007:9 104 109 5 Book-to-Market Equity Ratio

Portfolio of firms in the tenth deciles of size and BE/ME
2007:10-2023:6 104 189 4 Firm Size

Book-to-Market Equity Ratio
1960:1-1996:12 104 444 4 Book-to-Market Equity Ratio
1960:1-1982:12 104 276 4 Firm Size

Book-to-Market Equity Ratio
Risk-Free Return

1982:1-1996:12 104 168 3 Firm Size
Book-to-Market Equity Ratio

37



Figure 6: Actual and Fitted Values of Rm
t −Rf

t

Notes: The shaded region around the fitted values of Rm
t −Rf

t is a 95% credible interval. The variances

of the fitted values are available directly from the Kalman smoother.
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A Missing Data

This section details a PX-EM algorithm for an unbalanced panel dataset. Posterior moments

are obtained using a Kalman smoother adjusted for missing data. The observation equation

is modified in each period to only contain variables that were observed that period. Let the

set of time periods Oi be defined as Oi ≡ {t : Xit is observed}. Let τim be the mth entry in

Oi. We now define F̂i ≡ (f̂τi1 , . . . , f̂τiTi )
′, P̂i ≡

∑
t∈Oi

E[(ft − f̂t)(ft − f̂t)
′|X, θn],

Algorithm 3 PX-EM Algorithm with Missing Data

while lnf(X|θn−1) + lnπ(θn−1)− (lnf(X|θn−1) + lnπ(θn−1)) > tolerance level do
E Step:
Run a Kalman smoother to obtain {F̂i}, Ĝ, {P̂i}, Ĉ, and P̂g.
for 1 ≤ i ≤ N do

γ̂i = (1 +
ρi,n−1

1−ρi,n−1

α1

α0
exp((α0 − α1)σ

2
i,n−1))

−1.

end for

M Step:
for 1 ≤ i ≤ N do

Λ∗
i,n = X ′

iF̂i(F̂
′
i F̂i + P̂i)

−1

SSi =
∑

t∈Oi
(Xit − Λ∗

i,nf̂t)
2 + Λ∗

i,nP̂iΛ
∗′
i,n

α∗
i = (1− γ̂i)α0 + γ̂iα1

σ2
i,n = SSi

1
2
(Ti+

√
T 2
i +2α∗

i SSi)

ρi,n = γ̂i+1−a
2a−1

end for
Φ∗

n = (Φ∗
1,n, . . . ,Φ

∗
p,n) = (F̂ ′Ĝ+ Ĉ)(Ĝ′Ĝ+ P̂g)

−1

Ω∗
n = T−1(

∑
t(f̂t − Φ∗ĝt)(f̂t − Φ∗ĝt)

′ + Φ∗P̂gΦ
∗′ − Φ∗Ĉ ′ − ĈΦ∗′)

Rotation Step:
Calculate AL

n , the lower Cholesky factor of Ω∗
n.

Λn = Λ∗
nA

L
n

for 1 ≤ l ≤ p do
Φl,n = AL

n
−1
Φ∗

l,nA
L
n

end for
end while
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B Efficient Gradient Calculation and Proof of Propo-

sition 1

A different route to evaluating the gradient can be seen by noting that the integrated like-

lihood for a DFM is equivalent to that of a DFM that also includes presample instances of

the state variable. If we let F † = (f0, f−1, . . . , f−τ+1), the likelihood can then be expressed

as

f(X|θ) =
∫
f(X|F, θ)π(F |θ)dF =

∫ ∫
f(X|F, θ)π(F |F †, θ)π(F †|θ)dFdF †. (22)

Since the model with presample factors is also valid, it is also amenable to the construction

of an EM algorithm. Define Qτ (θ|θn) ≡ E[lnf(X,F, F †|θ)]. Using the same result from Ruud

(1991), we know that

∇lnf(X|θn) = ∇Qτ (θn|θn). (23)

I will now show that for τ sufficiently large, we can calculate the gradient using only the

conditional terms in Qτ (θn|θn) and omit any terms that involve the stationary distribution

of the factors.

Proposition 1

Let F † = (f0, f−1, . . . , f−τ+1), Qτ−p(θ|θn) ≡ E[lnf(X,F, f0, f−1, . . . , f−τ+p+1|

f−τ+p, . . . , f−τ+1, θ)|X, θn] and assume θn is an interior point of the parameter space.

lim
τ→∞

∇Qτ−p(θn|θn) = ∇lnf(X|θn).

Proof. As τ → ∞, ∇Qτ (θn|θn) becomes an infinite sum. Since ∇lnf(X|θn) = ∇Qτ (θn|θn),

we know that this sum must converge to the desired gradient. All that remains is to show

that the terms involving the stationary distribution go to 0. As the Kalman smoother is
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iterated backwards, the smoothed moments of the factors will converge to the stationary

moments: E[gt|X, θn] → E[gt|θn] = 0, E[(gt− ĝt)(gt− ĝt)
′|X, θn] → P0. By Gibb’s Inequality,

E[∇lnπ(gt|θn)|θn] = 0 for any θn in the interior of the parameter space. We can thus conclude

that

lim
τ→∞

∇Qτ (θn|θn)−∇Qτ−p(θn|θn) = lim
τ→∞

E[∇lnπ(g−τ+p|θn)|X, θn]

= E[∇lnπ(gt|θn)|θn]

= 0.

For an accurate calculation of the gradient, τ should be chosen so that the smoothed

moments converge to the stationary moments. This will obviously depend on the persistence

of shocks in the model. For highly persistent models, simulation results suggest that τ =

5, 000 is sufficiently large.
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