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Abstract

In models which allow for random jumps, statistical tests for jumps are typically

non-standard and nuisance parameter-dependent. To handle these problems, we combine

bounds and Monte-Carlo (MC) simulation techniques to derive nuisance-parameter-free

bounds and obtain level-exact p-values for a wide class of processes with random jumps

and time varying heteroskedasticity. When identified nuisance parameters are absent

under the null, we show that MC p-values are finite sample, level-exact. To illustrate this

easy-to-implement approach, we analyze the spot prices of four commodities (Aluminium,

Copper, Gold and Lead) and the closing prices of four technology stocks (Intel, Microsoft,

Oracle and Sun). We find significant jumps in these time series. Our approach can easily

be extended to other nuisance-parameter dependent tests.

Keywords: Monte-Carlo test; bounds test; exact test; jump process; conditional het-

eroscedasticity.



1 Introduction

Since Merton’s 1976 paper, processes with random jumps have become increasingly pop-

ular for modeling interest rates, exchange rates, stock and commodity prices, as well as

natural resource prices. However, testing for jumps combines severe (and often overlooked)

econometric difficulties that invalidate asymptotic methods as well as the standard boot-

strap. In fact, no provably finite-sample jump test is currently available. In this paper, we

propose a simple jump test method that guarantees type (I) error control for any sample

size, for a wide class of random jump processes.

The economic literature dealing with jumps and their implications is now quite volu-

minous; see for example Ball and Torous (1985), Jarrow and Rosenfeld (1984), Ahn and

Thompson (1988), Akgiray and Booth (1988), Jorion (1988), Brorsen and Yang (1994),

Bates (1996a-b), Bakshi, Cao and Chen (1997, 2000), Drost, Nijman and Werker (1998),

Bates (2000), Benzoni (2001), Pan (2001), Saphores, Khalaf, and Pelletier (2002), Das

(2002), Chernov, Gallant, Ghysels and Tauchen (2002), and the references cited therein.

Jump-models, which have been generalized to include mean-reversion and heteroskedas-

ticity, are appealing because they can capture ”surprise effects”, i.e. large changes at-

tributable to the arrival of unexpected information (Merton 1990). From an empirical

perspective, jump models combined with processes allowing for time varying volatility,

such as (G)ARCH processes, are also well-suited to capture the distributional fat-tails

of many economic and financial time series. By now, it has been widely documented

that economic and financial time series are compatible with both jumps and time vary-

ing volatility. However, with or without GARCH effects, statistical tests for jumps are

particularly challenging for at least three reasons.

First, these tests involve nuisance parameters that are not identified under the no-

jumps null hypothesis (the parameters describing the distribution of the jumps or possibly

some of the GARCH parameters). In the presence of nuisance parameters, it is well known



(e.g., see Bera and Ra 1995, Hansen 1996, or Andrews 2000 and 2001) that the tests’

limiting null distributions are highly non standard and, more importantly, may depend

on nuisance parameters. This precludes the application of standard simulation-based size

correction techniques (e.g. specialized critical point tables or the standard bootstrap).

Second, the no-jump null hypothesis sets the parameter describing the arrival of jumps

at a boundary of its permissible domain (the so-called ”nesting-at-boundary” problem).

As demonstrated by Andrews (2001), this situation produces difficulties similar to uniden-

tification; standard asymptotics and even bootstraps may fail.

The third difficulty stems from the GARCH parameters. These parameters are usually

subject to local identifiability constraints (such as positivity and invertibility) and they

intervene as nuisance parameters in the no-jump test problem. As emphasized in Dufour

(1997), nuisance parameters not identified over the whole parameter space (locally almost

unidentified (LAU) parameters) may cause test sizes to deviate severely from their nominal

levels; both standard asymptotics and the bootstrap may thus fail. For instance, the semi-

parametric GARCH(1,1) based asymptotic Wald jump test proposed by Drost, Nijman

and Werker (1998) relies on the delta-method, and is thus not immune to LAU difficulties

(Dufour 1997).

All of the above-mentioned statistical difficulties have important implications for the

properties of jump tests. In particular, spurious rejections - resulting from test size

distortions - cannot be ruled out, which underscores the importance of accounting for

sample size for inference. Indeed, Dufour (1997) and Andrews (2000, 2001) show that

test size distortions are not a small sample problem: they occur because of the failure of

standard asymptotics rather than slow convergence. Spurious rejections may thus occur

even with very large financial data sets.

Yet, in spite of the widespread application of jump models, all of the above refer-

ences (with the exception of Saphores, Khalaf, and Pelletier 2002) are only justified on
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asymptotic grounds.1 In this context, this paper proposes a simple jump test method that

guarantees type (I) error control for any sample size, for a wide class of random jump

processes. More specifically, we make three contributions.

First, we show by deriving explicitly a pivotal bound that the null distribution of the

test statistic we propose is bounded by a nuisance-parameter-free distribution (i.e., it is

boundedly pivotal). This is a fundamental result in view of Dufour’s (1997) impossibility

theorem: he proves that, in LAU models, the test’s size is impossible to correct unless the

null distribution of a test statistic is boundedly pivotal.

Second, we rely on our pivotal bound to obtain a level-correct p-value for our jump test

by applying the Monte-Carlo (MC) test technique (see Dufour 2002, Dufour and Khalaf

2001a-b). Because of the difficulties documented above, a standard bootstrap p-value,

which is simulated using nuisance parameters point-estimates, is not even asymptotically

valid for jump tests. In a different context, Dufour (2002) proposes to solve the nuisance

parameter problem and control his MC test level by finding the maximal simulated p-value

over the relevant nuisance parameter space. As this approach tends to be computationally

intensive, we propose instead to find by simulation a bounds-based MC p-value using

draws from our pivotal bound, which preserves the test level in finite samples without

having to find the sup-p-value.2 Furthermore, our method can easily be used for any

assumed error distribution (no only Gaussian) that can be simulated.3

Third, to demonstrate the feasibility of our proposed test methodology, we present

1Possibly applicable asymptotic procedures (such as Hansen 1996, or Andrews 2000 and 2001) have not
been shown to work for jump tests. Hansen’s and Andrew’s methodologies should - in principle - perform
better than standard asymptotics (see for example the recent application of Hansen’s methodology in
Das 2002). To the best of our knowledge, however, the finite sample properties of these methods have
not been studied for jump tests and these procedures have not been shown to control test size for any
sample size, in contrast with our proposed methodology.

2Dufour and Khalaf (2001a, 2002b) use a similar approach in a different context, unrelated with jump
tests.

3For related references on MC tests, see Dufour, Farhat, Gardiol and Khalaf (1998), Dufour, Khalaf,
Bernard and Genest (2001b), Dufour and Khalaf (2001a), and Saphores, Khalaf and Pelletier (2002).
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two empirical applications. We investigate the existence of jumps in the presence of

GARCH(1,1) errors in the sample paths of the spot prices of four metals (Aluminium,

Copper, Gold and Lead) and in the daily closing prices of four technology stocks (Intel,

Microsoft, Oracle and Sun). We find ample evidence of jumps in all time series analyzed.

The paper is organized as follows. Our testing methodology is presented in Section 2.

Section 3 describes our empirical applications and discusses our results. Section 4 sum-

marizes our conclusions and offers suggestions for future research. An appendix provides

basic statistical definitions, summarizes the main features of the MC test method (Dufour

2002), and documents the expressions of some of our likelihood functions.

2 Statistical Framework and Methodology

In this section, we derive a pivotal bound for a wide class of jump tests and show how

to combine this bound with the MC test technique to tackle the econometric problems

affecting the validity of jump tests in models with time varying volatility and random

jumps.

To set focus, consider a stationary AR(1) model with GARCH (1,1) errors and Poisson

jumps. If we denote the observed series by xt, t = 1, ..., T , this model may be written as

xt = a0 + a1xt−1 +
p
htzt +

ntX
i=1

lnYti,(2.1)

ht+1 = ρ0 + ht(ρ1z
2
t + ρ2),(2.2)

where |a1| < 1 and ρ1 + ρ2 ≤ 1 for stationarity, zt iid∼ N(0, 1), nt is the number of jumps
which occur between t and t−1, and Yti (i = 1, ..., nt) is the size of the ith jump in the time
interval (t−1; t). We also assume that jumps follow a Poisson process with arrival rate λ,
and that the Yti’s are (independently) lognormally distributed with mean θ and variance

δ2. Note that nt is an integer random variable. If nt = 0, there are no jumps. If we
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constrain nt to be 0 or 1, we have a Bernoulli process. The case a1 = 1, ρ1 = ρ2 = 0 yields

a discretized version of Merton’s Jump/Geometric-Brownian-Motion model; also setting

ρ2 to zero gives the Jump/ARCH process considered by Jorion (1988). If on the other

hand a1 is constrained to be between 0 and 1, we have a discretized Ornstein-Uhlenbeck

model with jumps and GARCH(1,1) innovations.

The parameters of the mixture model (2.1)-(2.2) may be estimated by maximum like-

lihood. The null hypothesis under consideration is

(2.3) H0 : λ = 0 (no jump) ,

and its associated LR statistic takes the form

(2.4) LR = 2[LJAG − LAG],

where LAG and LAG are respectively the maximum of the log-likelihood function (MLF)

associated with (2.1)-(2.2) imposing and ignoring the null hypothesis (2.3); the subscripts

AG and JAG refer respectively to the (no-jumps) AR/GARCH and the Jumps/AR/GARCH

models.

As recalled in the introduction, the results of Hansen (1996), Dufour (1997), and An-

drews (2000, 2001) imply that the regularity conditions underlying standard asymptotics

(pivotal - possibly χ2 - limiting null distribution, the validity of the bootstrap, etc.) are

not verified for LR. One reason here is that the two nuisance parameters θ and δ are not

identified under H0 (i.e., when λ = 0, the likelihood function no longer depends on θ

and δ). Another reason is that the value of λ tested under H0 is on the boundary of the

parameter space. Furthermore, problems may stem from the AR/GARCH parameters

a1, ρ1 and ρ2 which admit LAU regions at the relevant boundaries, thus causing possible
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discontinuities in the null limiting distributions.4

The approach we follow in this paper is to obtain a level-correct p-value which is

invariant to all these nuisance parameters. Our test thus achieves level α: under the

null, the largest rejection probability overall relevant nuisance parameters is ≤ α, for any

sample size; see equation (A.3).

2.1 Exact jump tests

2.1.1 A bound to the null distribution of the LR jump test

Let us first introduce a bound to the LR statistic (2.4) that will allow us to easily obtain

a level-exact cut-off point.

Lemma 2.1 In the context of the jump test described by (2.1)-(2.2)-(2.3), consider the

LR no-jump criterion (2.4)

LR = 2[LJAG − LAG],

where LJAG is the maximum of the log-likelihood function (MLF) and LAG is the MLF

imposing the no-jump hypothesis H0 defined in (2.3). Let LB denote the MLF imposing

HB
0 : λ = 0, a1 = a

B
1 , ρ1 = ρB1 , ρ2 = ρB2 ,

where aB1 , ρ
B
1 , and ρB2 are known constants. If we define

LR = 2 [LJAG − LRW ] ,

4The model, and test problem, are invariant to transformations of the form p∗t = c∗pt + d∗, where
c∗ > 0 and d∗ ∈ <. It follows that LR statistics are location-scale invariant; see Dagenais and Dufour
(1991). Consequently, a0 and ρ0 pose no particular problem here.
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then LR is nuisance parameter free and it bounds LR. Indeed,

(2.5) ∀c, P (LR ≥ c) ≤ P (LR ≥ c).

As a result, LR is boundedly pivotal.

Proof. Since HB
0 ⊆ H0 and since a restricted maximum is less than or equal to the

unrestricted one, LJAG ≥ LAG ≥ LB. This implies that

(2.6) [LJAG − LAG] ≤ [LJAG − LRW ] ,

and thus LR ≤ LR. Furthermore, asHB
0 restricts all the identified intervening parameters

to known values, the null distribution of LR is nuisance parameter free.5 The result follows

(see A.2).

The statistical strategy underlying our bound LR may be summarized as follows (see

Section A in the appendix). We introduce a hypothesis [HB
0 ] formulated so that: (i) it

is a special case of the restrictions to be tested, and (ii) its associated LR criterion is

pivotal. For example, the hypothesis which sets all relevant intervening parameters to

known values achieves this requirement. The LR criterion associated with HB
0 [namely

LR] provides the desired bound. Indeed, since HB
0 is constructed as a special case of the

tested hypothesis, LR is clearly larger than LR, and thus the null distribution of LR yields

an upper bound applicable to LR. Most importantly, the pivotality of LR guarantees the

validity of the bounds test since the cut-off point associated with the pivotal bounding

statistic is conservative: if the observed LR exceeds the bounds-cut off point (the critical

point associated with LR), then the test based on LR is most certainly significant.6

5As mentioned above, the no-jump LR statistic is location-scale invariant. Consequently, a0 and ρ0
are not nuisance parameters here.

6For a different (although related) problem, Dufour (1997, Theorem 5.1) uses a similar strategy to
bound the null distribution of the LR statistics in instrumental variable (IV) regressions with possibly
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Let us now show how to obtain a nuisance-parameter-free cut-off (or alternatively a

p-value) through the bounding statistic LR, using MC tests.

2.1.2 Exact Monte Carlo LR jump tests

Let us first consider Merton’s basic model, i.e. (2.1)-(2.2) with a1 = 1, ρ1 = ρ2 = 0.

Let LR0 denote the value of the jump statistic computed from the observed data. To

obtain an exact Monte Carlo jump test, simulate N samples from the no-jump data

generating process where a0 and ρ0 are set to their constrained MLE values (imposing the

no-jump null hypothesis). For all simulated samples, compute the corresponding jump

test statistics, denoted LR1, ..., LRN . Next, calculate

(2.7) bpN (LR0) = N bGN(LR) + 1
N + 1

, bGN(LR0) = PN
i=1 I[0,∞] (LRi − LR0)

N
,

where I[0,∞](x) = 1 if x ≥ 0 and I[0,∞](x) = 0 otherwise. Then for all 0 < α < 1, the

critical region

(2.8) bpN(LR0) ≤ α

has exactly size α if α(N + 1) is an integer, in the sense that

(2.9) P(H0) [bpN(LR0) ≤ α] = α,

where P(H0) refers to the probability imposing the null hypothesis.

Property (2.9) is based on a fundamental distributional result concerning the ranks

of a set of exchangeable random variables (Dufour 2002). Lemma B.1 (see the appendix)

weak instruments. The IV-regressions test relates to the jump test we study in this paper through the
identification difficulties both tests raise: poor instruments are indeed LAU problems. Of course, the
jump test case is further complicated by the unidentified jump parameters.
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applies here on observing that: (i) N − N bGN(LR0) + 1 gives the rank of LR0 in the
series LR0, LR1, ..., LRN , and (ii) LR0 and LRj , j = 1 , . . . , N are exchangeable

(by construction). Indeed, since the test problem is location-scale invariant, the null

distribution of the simulated statistic does not depend on a0 or ρ0, and so the LRj , j =

1 , . . . , N are i.i.d. random variables with the same distribution as LR0 under the

no-jump null hypothesis. This implies that the MC p-value (2.7) is invariant to the values

of a0 and ρ0.

As a result, the MC p-value (2.7) does not depend on the ”problematic” parameters

θ and δ2. Furthermore, the boundary restriction does not intervene since the conditions

underlying Lemma B.1 (no unknown parameter needs to be dealt with in order to generate

LR1, ..., LRN) are satified.

Now suppose instead that the values of a1, ρ1, and ρ2 are not set by the model, which

is typically the case. To better understand our approach, let us see how we would proceed

with a (standard) parametric bootstrap. Let LR0 denote the observed value of (2.4).

First, we would draw N simulated samples setting all parameters, namely a0 and ρ0, and

a1, ρ1, and ρ2, to their constrained MLE values ba0, ba1, bρ0, bρ1, and bρ2 estimated from the

data. We would then calculate (2.4) for these simulated samples and get N replications of

the test statistic. Finally, we would calculate a p-value from 2.7, but this p-value would

depend on the choice of a1, ρ1, and ρ2, so we would denote it by

(2.10) bpN(LR0|ba1,bρ1,bρ2).
Since the null distribution of the simulated statistic is not pivotal, nothing guarantees

that the level property P(H0) [bpN(LR0|ba1,bρ1,bρ2) ≤ α] ≤ α holds. Furthermore, nothing

guarantees regularity conditions which ensure asymptotic validity, in the sense that

(2.11) lim
T→∞

©
P [bpN(LR0|ba1,bρ1,bρ2) ≤ α]− P [bpN(LR0|a01, ρ01, ρ02) ≤ α]

ª
= 0.
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In (2.11), bpN (LR0|a01, ρ01, ρ02) is the empirical p-value one would obtain for the ”true”
nuisance parameters values (which are, of course, unknown). In fact, the results of Dufour

(1997, 2002) and Andrews (2000, 2001) imply that the conditions underlying (2.11) fail

for the same reason that standard asymptotics fail in this context. In practice, this means

that a test based on (2.10) may be spurious even in large samples.

To avoid these problems, one alternative to the parametric bootstrap (see Section B

in the appendix) is to conduct a maximized Monte Carlo (MMC) test, which consists in

taking the sup of the bootstrap p-values over the relevant nuisance parameters space:

(2.12) sup
a1,ρ1,ρ2

[bpN (LR0|a1, ρ1, ρ2)] ≤ α.

Such a test is level-correct by construction, in the sense that

(2.13) P(H0)

·
sup

a1,ρ1,ρ2

[bpN(LR0|a1, ρ1, ρ2)] ≤ α

¸
≤ α.

Of course, the MMC test is only useful if the sup-p-value is non-trivial. Lemma (2.1)

establishes this property for sup bpN(LR0|a1, ρ1, ρ2), so the MMC test is applicable. Calcu-
lating the MMC sup-p-value is computationally intensive, however, so we pursue a bounds

MC (BMC) test instead.

Proposition 2.2 In the context of the jump test described by (2.1)-(2.2) and the null

hypothesis (2.3) λ = 0, consider the LR test statistic (2.4)

LR = 2[LJAG − LAG]

where LAG and LJAG are the MLF imposing and ignoring λ = 0. Let LR0 denote the

value of LR computed from the observed data. Obtain simulated samples from the data

generating process (2.1) and (2.2) without jumps where all parameters are set to their
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constrained MLE values ba0, ba1, bρ0, bρ1, and bρ2. For each simulated sample, compute
(2.14) LRi = 2

£
LiJAG − LiRW

¤
, i = 1, ..., N,

where LiJAG is the unconstrained MLF associated with (2.1)-(2.2) and simulated sample i;

and LiRW denotes the corresponding MLF imposing

HB
0 : λ = 0, a1 = ba1, ρ1 = bρ1, ρ2 = bρ2.

In the above, ba1, bρ1, and bρ2 are the MLE values computed from the observed data and

used to generate the simulated samples. Let

epN(LR0) = N eGN (LR0) + 1
N + 1

, eGN(LR0) = PN
i=1 I[0,∞](LRi − LR0)

N

with I[0,∞](x) = 1 if x ≥ 0 and I[0,∞](x) = 0 otherwise. Then for all 0 < α < 1, the

critical region

(2.15) epN(LR0) ≤ α

has exactly level α if α(N + 1) is an integer, in the sense that

(2.16) P(H0) [epN(LR0) ≤ α] ≤ α

where P(H0) refers to the probability imposing the null hypothesis.

Inequality (2.16) obtains from Lemma 2.1 with aB1 = ba1, ρB1 = bρ1, ρB2 = bρ2 and Lemma
B.1. Indeed, the N random variables LRj, j = 1 , . . . , N are independent realizations

from a distribution which bounds the distribution of LR0, in the sense of (A.5), under the

null hypothesis of interest. Then epN(LR0) bounds the empirical probability to observe a
11



value as extreme or more extreme than LR0 under the null hypothesis. Formally, (2.5) in

Lemma 2.1 implies that

©
P(H0) [epN(LR0 ) ≤ α]

ª ≤ ½P(H0) · sup
a1,ρ1,ρ2

[bpN (LR0|a1, ρ1, ρ2)] ≤ α

¸¾
.

Applying (2.13) to the preceding inequality proves (2.16). The key here is, again, that no

unknown parameter (including θ and δ2) needs to be dealt with to draw realizations from

the bounding statistic (??). This also takes care of the boundary restriction since the

level control conditions (2.16) depend only on the availability of i.i.d. realizations from

the bounding statistic.

The result of Proposition 2.2 is not limited to the bounding constraint (HB
0 in Lemma

2.1) based on aB1 = ba1, ρB1 = bρ1, ρB2 = bρ2. In fact, a valid bound only requires to restrict
a1, ρ1 and ρ2 to (any) known values (e.g., a1 = 1, ρ1 = ρ2 = 0), so long as the simulated

samples are generated with these values. Furthermore, the choice of values for (a0, ρ0) is

also irrelevant, due to the location-scale invariance of the testing problem. Note that the

MMC methodology may be viewed as a numerical search for the optimal bound, i.e. the

value of a1, ρ1 and ρ2 which will yield the tightest bound. Of course, there is no use to

search for the tightest bound if the test is significant for a valid bound.

When implementing the BMC procedure in conjunction with a MMC test, it is useful

to realize that bootstrap non-rejections are exactly conclusive in the sense that:

{bpN(LR0|ba1,bρ1,bρ2) > α}⇒
½
sup

a1,ρ1,ρ2

[bpN(S0|a1, ρ1, ρ2)] > α

¾
.

We thus recommend the following three-step MC procedure, which bears similarities with

the well known Durbin-Watson test:

• Obtain a bounds p-value as described in Proposition 2.2. If the bounds p-value ≤ α,

then the test is significant.
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• If the bounds p-value > α, obtain a (standard) parametric bootstrap type p-value as

explained above. If this bootstrap p-value exceeds α, then the test is not significant.

• If the bounds p-value > α whereas the bootstrap p-value ≤ α, derive the MMC

p-value as in (2.12).

To conclude this section, it is worth emphasizing that our methodology can easily be

extended to a wide class of models.

First, with respect to the GARCH component, our testing strategy is valid for the

class of augmented GARCH(p,q) processes (see Duan 1997). This includes many popular

processes such as the LGARCH(p,q), MGARCH(p,q), and EGARCH(p,q) (see Duan

1997 and references therein).7 To apply the BMC methodology, realizations from the null

distribution of a bounding statistic based on any null hypothesis that sets all nuisance

parameters to known values could be used. The simplest possibility is the driftless random

walk, which guarantees the existence of a non-trivial pivotal bounding statistic. In turn,

the existence of this bound guarantees that the MMC algorithm will not trivially converge

to 1. Thus, a LR-based three-step MC test as described above is provably immune to LAU

difficulties in finite samples, a property not yet established for Wald type jump tests (e.g.

Drost, Nijman and Werker 1998).

Second, the normality assumption (normality of zt in (2.1)-(2.2)) is not necessary

for the validity of our approach. For many empirical applications, heavy tailed (such

as student-t- based) or asymmetric distributions may also be considered. Indeed, our

results simply rely on the fact that a constrained MLF is always less than or equal to its

unconstrained counterpart, whether the likelihood is Gaussian or not.

7Using Duan (1997)’s GARCH specification is relevant because this GARCH class converges [under
Gaussian fundamentals] to jumpless processes as the frequency of observations increases. This is desirable,
in a mixtures context, to improve identifiability of the discrete jump component; see Drost, Nijman and
Worker (1998) for more insight on alternative GARCH processes with inherent jumps.
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3 Empirical illustration

To illustrate our methodology, we consider two empirical applications where we test for

jumps with and without GARCH effects.

3.1 Empirical Data

In the first application, we analyze the daily and weekly London Metal Exchange (LME)

spot prices of four metals: Aluminium, Copper, Gold, and Lead. In the second application,

we look at daily and weekly closing prices of four NASDAQ technology stocks: Intel,

Microsoft, Oracle, and Sun. It is well known that the presence of jumps in time series of

commodities or stocks can have serious implications on pricing futures contracts as well

as derivatives (e.g., see Jorion 1988).

In both applications, our price series extend from the beginning of 1989 to the end

of January 2002. The number of daily data points differs slightly between the two appli-

cations (3302 for metals and 3414 for technological stocks) because the LME sometimes

closes on days where the NASDAQ is open. Weekly series (683 points) are constructed

from daily data by taking the Wednesday price to avoid beginning or end of the week

effects. In the rare instances where the Wednesday price is missing, we use the Tuesday

price instead.

Tables 1 and 2 present summary statistics for the logarithm of the spot prices of the

eight series considered. For metals (Table 1), the skewness, excess kurtosis, and Jarques-

Bera statistics are significant at 1%, except for the skewness of Copper and the excess

kurtosis of Aluminium. For technological stocks (Table 2), the skewness, excess kurtosis,

and Jarques-Bera statistics are also significant at 1%, with the exception of the skewness

of Intel and Oracle. This evidence of fat tails motivates our jump models.
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3.2 Models

For metal spot prices, we fit to the logarithm of each time series a simple discretized

Ornstein-Uhlenbeck process (OU) with and without normally distributed Bernoulli jumps

and GARCH(1,1) errors. The full model can be written

(3.1) xt = µ(1− e−κ) + e−κxt−1 +
p
htzt + δ1nt lnYt,

where Pt is the spot price at time t; xt = Ln(Pt); ht+1 = ρ0 + ht(ρ1z
2
t + ρ2); zt

iid∼
N(0, 1); and nt equals one if a jump occurs between t and t − 1 or zero otherwise, so
δ1nt = 1 if nt = 1 and δ1nt = 0 otherwise. We denote by λ the probability of arrival

of a jump in a unit time interval , and assume that the jump size Yt is (independently)

lognormally distributed with mean θ and variance δ2. We suppose that jumps follow a

Bernoulli instead of a Poisson process to simplify the estimation and the interpretation

of our models. We get (3.1) from (2.1)-(2.2) by setting a0 = µ(1 − e−κ) and a1 = e−κ,

where κ > 0. If there are no ARCH effects, we simply set ρ1 = ρ2 = 0, and we designate

ρ0 > 0 by σ2.

By contrast, we model technological stock prices using a geometric Brownian motion

(GBM) with and without normally distributed Bernoulli jumps and GARCH(1,1) errors.

Using the same notations, the full model can be written

(3.2) xt − xt−1 = µ+
p
htzt + δ1nt lnYt.

(3.2) is obtained from (2.1)-(2.2) by setting a0 = µ and a1 = 1. Duan (1997) shows that

the diffusion limits of the no-jump components of (3.1) and (3.2) are stochastic volatility

models.

While the GBM is often the starting points of stock pricing models because of its
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attractive properties, there are theoretical reasons for modeling the spot price of com-

modities with a mean-reverting process. First, the GBM implies that the volatility of

spot prices increases without bounds as the time horizon increases. Second, as recalled

for example in Schwartz (1997), when the price of a commodity is relatively high, supply

tends to increase as higher cost producers enter the market, which ends up lowering prices.

Conversely, when prices are relatively low, supply over time tends to decrease as higher

cost producers exit the market, which puts upward pressure on prices.

We estimate our models by maximum likelihood using the software package Gauss.

The expressions of the likelihood function for (3.1), which we did not find elsewhere in

the literature, is provided in Section C in the appendix; for an expression of the likelihood

function for (3.2), see Ball and Torous (1985). As remarked by Ball and Torous (1985),

the likelihood functions of jump-diffusion models usually have a local maximum at λ = 0

(the no jump case). To guard against numerical maximization problems, we use the

procedure OPTMUM in GAUSS with multiple starting points of likely parameter values

for each iteration (up to 42 for the GARCH model) for observed and simulated bootstrap

maximum likelihood functions.

3.3 Results

Results are presented in Tables 3 and 4. We report estimates and standard errors, the

LR test statistic (2.4) and its bootstrap and bounds p-values bpN(LR0|ba1,bρ1,bρ2), epN(LR0)
defined by (2.10) and (2.15) respectively; see Proposition 2.2.

Table 3 presents our results for the weekly metals data; a summary of the results

for daily data [the estimated values of λ, the associated LR jump test statistic and its

MC bound p-values] is reported in a footnote. Table 4 reports our results for the daily

technological stocks data; a summary of the results for weekly data can be found in a

16



footnote.8

From Tables 3 and 4, we first observe that jumps are statistically significant in each

of the time series investigated, with and without GARCH effects, at both daily and

weekly frequencies. Indeed, both the bootstrap and bound-based p-values are 0.01 for

100 replications for all time series and all models considered, except for Lead where the

bound-based p-value is 0.02.9 There is thus no need to run the MMC test. These results

illustrate the usefulness of our bound.

For the metals data, estimated daily jump frequencies (λ) with GARCH errors, range

from 0.089 (one jump every ≈ 11 days) for Aluminium to 0.330 (one jump every ≈
3 days) for Gold. For the stock series, estimated jump frequencies in the presence of

GARCH errors range between 0.055 (one jump every ≈ 18 days) for Microsoft and 0.102
(one jump every ≈ 10 days) for Sun. Overall, the estimated λ is usually smaller in models

with GARCH errors; Lead (at weekly frequencies) and Gold (at daily frequencies) are

exceptions.

Serious caution must be exercised in comparing the values of λ for different frequencies;

indeed, daily frequencies may for example reflect beginning and end of the week effects or

peculiarities of the market micro-structure that are not present at lower frequencies (for

weekly, monthly, or quarterly data). For more on the pitfalls of comparing jump frequency

estimates, see for example the discussion in Drost, Nijman and Werker (1998) on time

aggregation of jump/GARCH models. Here we simply note that jumps are significant

for all the daily and weekly series we examined, and in some cases (e.g., Microsoft and

8Following Schwartz (1997) who analyzes the stochastic behavior of commodity prices using futures
data (although without allowance for jumps), we focus on weekly data for metals. Conversely, empirical
financial models usually rely on daily data. We report results based on daily data for metals and on
weekly data for technological stocks only for completeness.

9No asymptotics on N is used to derive the key properties of the MC method. In fact a value as small
as 19 is enough to control size; of course, power increases with N , yet in the literature on MC tests (see
the references above), it is demonstrated that 99 replications is a quite reasonable choice. See also the
section on Monte-Carlo tests in the appendix.
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Oracle), estimated jump frequencies are higher at weekly than at daily frequencies. As

recommended in the recent econometrics literature (see for example Dufour 1997, Staiger

and Stock 1997, Wang and Zivot 1998), a confidence interval for λ should be based on a set

estimate obtained by inverting exact tests rather than on Wald-type confidence intervals

based on asymptotic standard errors; indeed, the statistical difficulties discussed above

cast serious doubts on the reliability of the latter. Our exact test on λ may thus serve as

a basis for a more valid set estimation method, but this is left for future work.

Interestingly, on examining GARCH coefficients, conditional heteroskedasticity seems

prevalent with and without jumps. Our results suggest that neither Jump nor GARCH

models can solely account for the observed fat tails in the series analyzed. Note that for

Gold, although ARCH effects seem present in the GARCH-OU models (with and without

jumps), the GARCH parameter does not appear to differ from zero. This observation is

compatible with the findings of Schwartz (1997).

Our analyses of the metals data further reveal that the mean reversion coefficient

(denoted by κ), becomes even smaller when jumps are added, with and without GARCH.

For instance, in the case of the OU Aluminium model, the autoregressive coefficient

increases from exp(−.021) = 0.979 to exp(−.0075) = 0.993 in the jump model. This

observation should motivate further work on unit root test which formally account for

jumps.

Finally, although we assume Gaussian errors (in (3.1)-(3.2), zt
iid∼ N(0, 1)) as Gaussian-

based models often serve as useful and popular fundamental starting points, our test

strategy allows for non-Gaussian fundamentals (such as t-distributed errors) without any

conceptual change. Our purpose here is mostly to illustrate our testing procedure, keeping

in mind that, with the exception of the jump and ARCH tests in Saphores, Khalaf, and

Pelletier (2002), none of the available evidence in favor of jumps is exact, even in Gaussian

contexts.
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4 Conclusions

When nuisance parameters are unidentified under the null, conventional asymptotics and

the standard bootstrap fail even for large samples. This is typically the case for available

tests for jumps in jump models combined with processes allowing for time varying volatil-

ity such as (G)ARCH. In this paper, we propose a methodology combining boundedly

pivotal statistics with the MC test technique to tackle the difficulties plaguing available

jump tests. First, we establish analytically that the LR no-jump test statistic is boundedly

pivotal. Then, we apply simulation-based methods to the LR and to bounding statistics

to obtain level-exact p-values in finite samples. Our approach is simple to implement,

it is applicable to a large class of parametric models, and it can easily be generalized to

other test problems where unidentified nuisance parameters are present.

To illustrate the usefulness of our methodology, we conduct jump tests on the spot

prices of four metals and on the closing prices of four technology stocks. We fit a

mean-reverting process with normally distributed Bernoulli jumps, with and without

a GARCH(1,1) errors to the logarithm of the metal price series; for the technological

stocks, we estimate a geometric Brownian motion with normally distributed Bernoulli

jumps, with and without a GARCH(1,1) errors. We find statistically significant jumps

for all time series considered for both daily and weekly frequencies.

Our results suggest several promising avenues for further work, including the develop-

ment of mean reversion tests in the presence of jumps, the construction of exact confidence

sets for the jump frequency parameter, and empirical applications of our testing strategy

to other GARCH (including GARCH-t or other non-Gaussian) models.
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Table 1: Summary Statistics of the Logarithm of Weekly Spot Prices for Metals

Aluminium Copper Gold Lead

Mean 7.292 7.663 5.823 6.337

Standard deviation 0.165 0.227 0.140 0.209

Skewness 0.338 -0.078 -0.518 0.369

Excess kurtosis 0.032 -1.003 -1.178 -0.358

Jarques-Bera 13.019 29.326 70.001 19.135

The metals data consists of weeklyWednesday spot prices from the LondonMetals Exchange(LME).

There are 683 observations; they cover the period extending from 01/04/89 until 01/30/02. Fol-

lowing Campbell, Lo and MacKinlay (1997, pages 18-20), the distributions of skewness and

excess kurtosis under normality may be respectively approximated as N(0,6/T ) and N(0,24/T ),

where T is the sample size. The approximate distribution for Jarques-Bera is χ2(2). For a sample

size of 683, the corresponding 1% critical points for skewness, excess kurtosis, and Jarques-Bera

are thus ±0.241, ±0.482, and 9.21. We see that the skewness, excess kurtosis, and Jarques-Bera
statistics reported in Table 1 are significant at 1%, except for the skewness of Copper and the

excess kurtosis of Aluminium.
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Table 2: Summary Statistics of the Logarithm of Daily Spot Prices for Technological Stocks

Intel Microsoft Oracle Sun

Mean 1.924 2.461 0.839 1.018

Standard deviation 1.347 1.456 1.537 1.413

Skewness -0.005 -0.136 0.063 0.640

Excess kurtosis -1.388 -1.131 -0.998 -0.874

Jarques-Bera 273.99 192.52 143.93 341.68

The technological stocks data consists of daily closing prices from the NASDAQ. There are

3414 observations; they cover the period extending from 01/02/89 until 01/31/02. Following

Campbell, Lo and MacKinlay (1997, pages 18-20), the distributions of skewness and excess

kurtosis under normality may be approximated as N(0,6/T ) and N(0,24/T ), respectively. The

approximate distribution for Jarques-Bera is χ2(2). For a sample size of 3414, the corresponding

1% critical points for skewness, excess kurtosis, and Jarques-Bera are thus ±0.108, ±0.216, and
9.21. We see that the skewness, excess kurtosis, and Jarques-Bera statistics reported in Table 1

are significant at 1%, with the exception of skewness for Intel and Oracle.
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Table 3: Parameter Estimates and Bernoulli Jump Tests for Metal Prices10

Aluminium Copper

No Jumps Jumps No Jumps Jumps

OU

µ 7.249 (0.048) 7.246 (0.123) 7.549 (0.118) 7.453 (0.187)

κ 0.023 (6.5E-3) 7.9E-3 (6.2E-3) 0.011 (5.2E-3) 7.7E-3 (4.7E-3)

σ 0.028 (7.5E-4) 0.022 (9.9E-4) 0.030 (8.2E-4) 0.022 (1.7E-3)

λ 0.063 (0.029) 0.201 (0.076)

θ -9.8E-3 (0.013) 1.8E-3 (6.0E-3)

δ 0.064 (0.013) 0.046 (6.4E-3)

MLE 1488.05 1535.79 1417.72 1451.20

LR 95.49 [0.01, 0.01] 66.97 [0.01, 0.01]

OU GARCH

µ 7.227 (0.046) 7.255 (0.136) 7.519 (0.167) 7.310 (0.391)

κ 0.021 (6.8E-3) 7.5E-3 (6.3E-3) 7.3E-3 (5.1E-3) 4.8E-3 (4.7E-3)

ρ0 5.2E-5 (1.3E-5) 1.2E-5 (1.0E-5) 1.7E-4 (6.2E-5) 7.9E-5 (3.8E-5)

ρ1 0.060 (0.019) 1.7E-3 (2.1E-3) 0.108 (0.035) 0.089 (0.036)

ρ2 0.855 (0.029) 0.970 (0.025) 0.692 (0.093) 0.720 (0.088)

λ 0.050 (0.033) 0.167 (0.090)

θ -7.9E-3 (0.020) 4.4E-3 (6.9E-3)

δ 0.065 (0.017) 0.040 (7.3E-3)

MLE 1523.70 1551.56 1449.29 1468.19

LR 55.71 [0.01, 0.01] 37.79 [0.01, 0.01]

10Standard errors are in parenthesis. For the no-GARCH model, we report the bootstrap p-valuebpN(LR0|ba1) [(2.10)] and the bounds p-value epN(LR0) [(2.15)]; for the GARCH-MRM, we report the
bootstrap p-value bpN(LR0|ba1,bρ1,bρ2) [(2.10)] epN(LR0) and the bound p-values epN(LR0) [(2.15)] respec-
tively. Results with daily data for the Jump/MRM model (no-GARCH) may be summarized as follows.
Aluminium: estimated λ = 0.197 and LR = 446.004 (MC p-value = 0.01); Copper: estimated λ = 0.201
and LR = 416.560 (MC p-value = 0.01); Gold: estimated λ = 0.219 and LR = 945.366 (MC p-value =
0.01); Lead: estimated λ = 0.105 and LR = 636.870 (MC p-value 0.01). The MC p-values are based on
(2.8).
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Table 3 (Continued): Parameter Estimates and Bernoulli Jump Tests for Metal *** Prices11

Gold Lead

No Jumps Jumps No Jumps Jumps

OU

µ 5.751 (0.096) 5.356 (0.983) 6.291 (0.102) 6.143 (0.131)

κ 0.008 (0.005) 0.002 (0.004) 0.013 (6.1E-3) 0.012 (5.3E-3)

σ 0.017 (5E-4) 0.012 (0.001) 0.033 (8.9E-4) 0.024 (1.3E-3)

λ 0.142 (0.045) 0.152 (0.048)

θ 0.003 (0.004) 0.011 (7.6E-3)

δ 0.032 (0.004) 0.055 (7.5E-3)

MLE 1807.30 1868.71 1371.61 1414.38

LR 122.81 [0.01, 0.01] 85.54 [0.01, 0.01]

OU GARCH

µ 5.453 (0.512) 5.375 (1.042) 6.292 (0.100) 5.918 (0.286)

κ 3.3E-3 (4.1E-3) 1.8E-3 (4.0E-4) 0.011 (5.6E-3) 8.8E-3 (5.5E-3)

ρ0 2.1E-4 (1.6E-5) 1.4E-4 (1.7E-5) 4.4E-4 (1.0E-4) 1.9E-4 (6.6E-5)

ρ1 0.335 (0.079) 0.068 (0.050) 0.201 (0.048) 0.165 (0.044)

ρ2 0.000 (- -) 0.000 (- -) 0.346 (0.124) 0.411 (0.107)

λ 0.120 (0.050) 0.267 (0.101)

θ 0.000 (- -) 0.012 (6.1E-3)

δ 0.033 (5.4E-3) 0.035 (4.8E-3)

MLE 1828.45 1870.98 1416.58 1431.34

LR 85.05 [0.01, 0.01] 29.51 [0.01, 0.02]

11Standard errors are in parenthesis. For the no-GARCH model, we report the bootstrap p-valuebpN(LR0|ba1) [(2.10)] and the bounds p-value epN(LR0) [(2.15)]; for the GARCH-MRM, we report the
bootstrap p-value bpN(LR0|ba1,bρ1,bρ2) [(2.10)] epN(LR0) and the bound p-values epN(LR0) [(2.15)] respec-
tively. Results with daily data for the Jump/MRM/GARCH model may be summarized as follows.
Aluminium: estimated λ = 0.089 and LR = 210.376 (MC p-value = 0.01); Copper: estimated λ = 0.128
and LR = 122.423 (MC p-value = 0.01); Gold: estimated λ = 0.330 and LR = 705.582 (MC p-value =
0.01); Lead: estimated λ = 0.097 and LR = 253.631 (MC p-value 0.01). The MC p-values are based on
(see (2.15)).
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Table 4: Parameter Estimates and Bernoulli Jump Tests for Technology Stocks12

Intel Microsoft

No Jumps Jumps No Jumps Jumps

GBM

µ 1.1E-3 (4.7E-4) 1.7E-3 (4.7E-4) 1.3E-3 (4.0E-4) 1.4E-3 (3.9E-4)

σ 0.027 (3.3E-4) 0.021 (5.3E-4) 0.023 (2.8E-4) 0.019 (5.1E-4)

λ 0.122 (0.023) 0.106 (0.027)

θ -4.8E-3 (3.7E-3) -5.6E-4 (2.9E-3)

δ 0.049 (3.6E-3) 0.042 (3.8E-3)

MLE 7431.74 7608.31 7993.49 8138.51

LR 353.15 [0.01] 290.05 [0.01]

GBM GARCH

µ 1.6E-3 (4.3E-4) 2.0E-3 (4.3E-4) 1.7E-3 (3.6E-4) 1.6E-3 (3.6E-4)

ρ0 1.1E-5 (8.0E-6) 4.0E-6 (2.0E-6) 2.1E-5 (5.0E-6) 1.9E-5 (7.0E-6)

ρ1 0.041 (0.016) 0.024 (6.3E-3) 0.073 (0.012) 0.062 (0.013)

ρ2 0.945 (0.026) 0.963 (0.011) 0.889 (0.018) 0.877 (0.029)

λ 0.071 (0.019) 0.055 (0.018)

θ -8.0E-3 (5.0E-3) -2.1E-3 (4.4E-3)

δ 0.048 (5.1E-3) 0.045 (5.9E-3)

MLE 7609.68 7707.79 8136.69 8222.57

LR 196.20 [0.01, 0.01] 171.76 [0.01, 0.01]

12Standard errors are in parenthesis. For the no-GARCH model, we report bpN(LR0) based on (2.8);
for the GARCH-GBM, we report [bpN(LR0|ba1,bρ1,bρ2), epN(LR0)], i.e. the bootstrap and bounds p-values
defined by (2.10) and (2.15) respectively. Results with weekly data for the Jump/GBM model (no-
GARCH) may be summarized as follows. Intel: estimated λ = 0.019 and LR = 36.974 (MC p-value =
0.01); Microsoft: estimated λ = 0.210 and LR = 52.163 (MC p-value = 0.01); Oracle: estimated λ =
0.028 and LR = 43.924 (MC p-value = 0.01); Sun: estimated λ = 0.062 and LR = 65.950 (MC p-value
0.01). The MC p-values are based on (2.8).
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Table 4 (Continued): Parameter Estimates and Bernoulli Jump Tests for Technology Stocks13

Oracle Sun

No Jumps Jumps No Jumps Jumps

GBM

µ 1.3E-4 (6.6E-4) 7.6E-4 (5.8E-4) 8.8E-4 (6.0E-4) 1.1E-3 (5.9E-4)

σ 0.038 (4.7E-4) 0.029 (6.2E-4) 0.035 (4.2E-4) 0.027 (7.4E-4)

λ 0.088 (0.015) 0.148 (0.027)

θ 5.8E-3 (4.9E-3) -1.7E-3 (3.4E-3)

δ 0.084 (6.3E-3) 0.058 (4.1E-3)

MLE 6280.21 6575.99 6599.42 6764.54

LR 591.54 [0.01] 330.24 [0.01]

GBM GARCH

µ 2.1E-3 (6.0E-4) 1.4E-3 (5.4E-4) 1.8E-3 (5.4E-4) 1.8E-3 (5.6E-4)

ρ0 2.1E-5 (6.0E-6) 8.0E-6 (4.0E-6) 4.4E-5 (1.6E-5) 1.3E-5 (6.0E-6)

ρ1 0.040 (8.4E-3) 0.017 (5.0E-3) 0.063 (0.016) 0.038 (0.008)

ρ2 0.947 (0.011) 0.968 (0.011) 0.901 (0.028) 0.933 (0.016)

λ 0.045 (9.6E-3) 0.102 (0.026)

θ 1.7E-3 (6.4E-3) -5.1E-3 (4.5E-3)

δ 0.100 (9.9E-3) 0.055 (5.6E-3)

MLE 6422.28 6683.29 6771.03 6868.42

LR 522.02 [0.01, 0.01] 194.78 [0.01, 0.01]

13Standard errors are in parenthesis. For the no-GARCH model, we report bpN(LR0) based on (2.8);
for the GARCH-GBM, we report [bpN(LR0|ba1,bρ1,bρ2), epN(LR0)], i.e. the bootstrap and bounds p-values
defined by (2.10) and (2.15) respectively. Results with weekly data for the Jump/GARCH/GBM model
may be summarized as follows. Intel: estimated λ = 0.003 and LR = 21.677 (MC p-value = 0.01);
Microsoft: estimated λ = 0.069 and LR = 31.213 (MC p-value = 0.01); Oracle: estimated λ = 0.120 and
LR = 52.699 (MC p-value = 0.01); Sun: estimated λ = 0.046 and LR = 27.876 (MC p-value 0.01). The
MC p-values is bound based (see (2.15)).
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Appendix

A Fundamental definitions

This section provides the formal definition of an exact test (or p-value) and discusses some

potential difficulties of implementing this definition.

Definition A.1 Consider a test problem pertaining to a parametric model, i.e. the case

where the data generating process [DGP] is determined up to a finite number of unknown

real parameters ω ∈ Ω. Let Ω0 refer to the subspace of Ω compatible with the null hypothesis

H0 under test. Without loss of generality, consider a test statistic with critical region

S ≥ c. To obtain an α-level test, c must be chosen so that

(A.3) sup
ω∈Ω0

Pω (S ≥ c) ≤ α .

This test has size α if and only if

(A.4) sup
ω∈Ω0

Pω (S ≥ c) = α .

Whereas size control, if possible, is desirable, level control is required. In the light

of definition A.1, two difficulties must be dealt with to obtain an exact test. First,

the null distribution of S must be derived, and S is typically a complicated function

of the fundamentals. However, if simulated values of S which satisfy the null can be

obtained [possibly conditional on nuisance parameters], procedures such as MC tests or

the bootstrap can be used to tackle this first difficulty.

The second difficulty intervenes if the null distribution of the test statistic S used

depends on parameters not set by the null hypothesis (nuisance parameters), so S is not

pivotal. This happens when we test for jumps in jump-diffusion models, but also in many
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other situations of practical interest. Indeed, provably pivotal statistics are rare beyond

linear models. To deal with this difficulty, the MC test technique can be extended by

maximizing the rejection probabilities over the relevant parameter space (Dufour 1995).

For this - or any other size correction - approach to be useful, however, it is clear that

the maximization problem should be bounded: the null distribution of the test statistic S

should admit a nuisance parameter-free bound, which means that it should be boundedly

pivotal (Dufour 1997). This property can be defined as follows.

Definition A.2 Consider the test based on S underlying (A.4)-(A.3) and suppose that it

is possible to find another pivotal statistic S such that

(A.5) ∀ω ∈ Ω0, ∀c, Pω(S ≥ c) ≤ P (S ≥ c)

under the null. Then S is said to be boundedly pivotal.

Combining (A.5) with (A.3), we see that a test based on S with S’s critical points

is level-correct (i.e. satisfy the level constraint (A.3)) given the pivotal character of S.

When the null distribution of S is non-standard yet simulatable, the MC test technique

may be used to obtain the critical points of S by simulation (see Dufour and Khalaf 2001b,

2002a).

B Monte Carlo tests

In this section, we present the fundamentals underlying the MC tests method [Dufour

(2002)]. Consider the case where the null distribution of a statistic S at hand is simu-

latable, given a finite number of known real parameters. In other words, retaining the

notational framework of the preceding section, let ω = ω0 ∈ Ω, where ω0 is known.

1. Let S0 denote the observed test statistic.
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2. By Monte Carlo methods, obtain N i.i.d. draws form the null distribution of repli-

cations of S given ω; denote these simulated statistics Sj, j = 1 , . . . , N.

3. Compute the MC p-value

(B.6) bpN(S0|ω0) = N bGN (S0;Sj , j = 1 , . . . , N) + 1
N + 1

,

where N bGN(S0;Sj , j = 1 , . . . , N) is the number of simulated criteria ≥ S0 and
bRN (S0) = N −N bGN(S0;Sj , j = 1 , . . . , N) + 1

gives the rank of S0 in the series S0, S1, ... , SN . Formally, bGN(x;Sj , j =
1 , . . . , N) obtains as defined in (??)-(??).

4. The MC critical region, conditional on ω0 is

(B.7) bpN(S0|ω0) ≤ α, 0 < α < 1.

(B.6) gives the empirical probability to observe a value as extreme or more extreme

than S0 under the null. Consequently, bpN(S0|ω0) may be viewed as a randomized MC
p-value. Dufour (2002) proves that if α(N + 1) is an integer, P(H0) [bpN(S0 ) ≤ α] = α.

This result rests on the following Lemma.

Lemma B.1 Let Z0, Z1, ..., ZN be exchangeable real random variables, and let Rj be the

rank of Zj in the series {Z0, ..., ZN} assuming a non-decreasing ordering. Then

P [Rj/(N + 1) ≥ x] =


1 , if x ≤ 0,
(1 + I [(N + 1)(1− x)]) /(N + 1) , if 0 < x ≤ 1,
0 , if x > 1,
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where I(x) is the largest integer less than or equal to x.

If the intervening parameter ω is unknown, MC tests are generally based on the critical

region

(B.8) sup
ω∈Ω0

[bpN (S0|ω)] ≤ α.

Specifically, Dufour (2002) demonstrates that the test (henceforth denoted maximized

Monte Carlo (MMC) test) based on the latter critical region is exact at level α, in the

sense that

(B.9)
©
P(H0) [bpN (S0|ω)]ª ≤ α.

Finally, observe that since no asymptotics on N was used to derive all the above,

the number of MC replications needs not be very large. In fact a value as small as 19

is necessary to control size; of course, power increases with N , yet in the literature on

MC tests (see the references above), it is demonstrated that 99 replications is a quite

reasonable choice.

C Likelihood functions

This section provides the expressions of the log-likelihood functions for the mean-reverting

models used in the empirical illustration. φ(z) designates the density of the standard

normal distribution.

We suppose here that X = ln(P ) follows the Ornstein-Uhlenbeck process: dX =

κ(µ − X)dt + σdw, where dw is an increment of a standardized Wiener Process. From

Karlin and Taylor (1981), we know that, conditional on X = x0 at time 0, XT is normally

distributed with mean µ+(x0−µ)e−κT and variance σ2 (1−e−2κT )2κ
. If at time t (0 < t < T )
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we add a normally distributed jump (with mean θ and variance σ2) to Xt, then XT

(conditional on the arrival of a N(θ, σ2) jump at t) is normally distributed with mean

µ+ (x0 − µ)e−κT + θe−κ(T−t) and variance σ2 (1−e
−2κT )
2κ

+ δ2e−2κ(T−t). To derive fXT (·), the
unconditional (with respect to the time of arrival of a jump) distribution of XT for a single

jump occurring between 0 and T , we assume that the density of the arrival of jumps is

the rescaled exponential distribution λe−λt
1−e−λT . We obtain:

fXT (x) =

Z T

0

φ

µ
xt−µ(1−e−κT )−xt−1e−κT−θe−κ(T−t)q

σ2 1−e−2κT
2κ

+δ2e−2κ(T−t)

¶
q

σ2 1−e−2κT
2κ

+ δ2e−2κ(T−t)

λe−λt

1− e−λdt
¸

To simplify this expression, we assume that, if there is a jump in the interval (0, 1)

it takes place at time 1. Since the Monte-Carlo method requires many evaluations of

the likelihood function, this assumption reduces computing time substantially. Thus, the

log-likelihood function for an Ornstein-Uhlenbeck process with Bernoulli jumps arriving

with frequency λ is given by:

lB(
−→
ΘB; ~x) =

TX
t=1

ln

·
(1− λ)

φ

µ
xt−h0−h1xt−1

h2

¶
h2

+ λ

φ

µ
xt−h0−h1xt−1−θ√

h22+δ
2

¶
p
h22 + δ2

¸

−→
ΘB = (µ,κ, σ2,λ, θ, δ2), κ ≥ 0, λ ≥ 0,

h0 = µ(1− e−κ), h1 = e−κ, h2 = σ

µr
1− e−2κ
2κ

¶
, h3 = θe−κ, h4 = δ2e−2κ.

Adding a GARCH(1,1) error structure leads to the log-likelihood function for an
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Ornstein-Uhlenbeck with Bernoulli jumps and GARCH(1,1) errors:

lBG(
−−→
ΘBG; ~x) =

TX
t=1

ln

·
(1− λ)

φ

µ
xt−h0−h1xt−1√

ht

¶
√
ht

+ λ

φ

µ
xt−h0−h1xt−1−θ√

ht+δ2

¶
p
ht + δ2

¸
,

−−→
ΘBG = (µ,κ, ρ0, ρ1, ρ2,λ, θ, δ

2), κ ≥ 0, ρ0 > 0, ρ1 ≥ 0, ρ2 ≥ 0, λ ≥ 0,
h0 = µ(1− e−κ), h1 = e−κ, h3 = θe−κ, h4 = δ2e−2κ,

ht = ρ0 + ρ1(xt−1 − h0 − h1xt−2)2 + ρ2ht−1, t = 3, ..., T.

For our empirical illustration, we find that our assumption on the time of arrival of

jumps has no significant impact on the results.
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