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Abstract 

We consider a firm that must undergo a costly and time-consuming regulatory process before 

making an irreversible, lagged investment whose value varies randomly. We analyze two cases: 

regulatory approval is valid forever or it expires after some time. We apply our model to Hydro-

Québec’s project of building a 1250 megawatts interconnection with Ontario.  We find that the 

firm may start the regulatory process earlier if regulatory approval is valid long enough or if 

uncertainty is high enough; it postpones it otherwise. When to start the regulatory process and 

when to invest depend on the duration of the regulatory green light. 

 

1. Introduction 

From the point of view of the firm, regulatory requirements prior to starting a project are a costly 

investment lag. Since the work of Bar-Ilan and Strange (1996), the theoretical and practical 

importance of investment lags has been increasingly acknowledged, as projects often need 

several years before they become operational. This lag is of course needed for project design, 

planning, and construction, but also to obtain the necessary regulatory approval, often for 

environmental reasons. Environmental impact assessment can be particularly long (compared to 

the building stage) for energy project such as natural gas and oil pipelines, power plants and high 

voltage transmission lines. Distinguishing between the different causes of a project lag is 

important because a firm typically has little control over the cost, the duration, and even the 

probability of success of a regulatory review. Moreover, once secured, the regulatory green light 

may be valid only for a limited time.  Thus far, these considerations appear to have received little 

attention in the economics literature on regulation. 
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The purpose of this paper is thus to analyze how the parameters of a regulatory review 

(duration, cost, and probability of success) affect the decision to invest in a simple model of 

investment under uncertainty. We consider a firm that contemplates making a lagged, 

irreversible investment, whose value varies stochastically. The firm must incur an upfront cash 

outlay to start the regulatory process, whose outcome is uncertain.  Once regulatory approval has 

been granted, we consider two possible cases: 1) it is valid forever; or 2) it expires. The firm thus 

faces a sequential investment problem, where an initial investment is required to get the option of 

investing. To ground our numerical results, we apply our model to Hydro-Québec’s recent 

project proposal to add a 1250 MW (megawatts) interconnection to the Ontario power grid.1 

Our paper makes two contributions. First, we show that the duration of the validity of 

regulatory approval significantly impacts the decisions to start the regulatory process and to 

proceed with the project. For small durations of the regulatory approval or for low volatility, the 

firm delays starting the regulatory process, but this is reversed for long approval durations or for 

high volatility. In spite of the presence of an investment lag, the firm delays investing (once 

approval has been secured) when uncertainty increases, because we suppose that the flow of 

investment benefits admits a lower reflecting boundary. This assumption, which is common in 

the investment literature, is appropriate if there is no risk that the investment opportunity 

disappears. It seems reasonable here for our application to a power grid interconnection. These 

results underscore the need for transparent regulatory policies. 

Second, our paper is one of the few applications of real options to regulation and to 

energy projects; one exception is Chaton (2001). There is also a growing literature on electricity 

                                                 

1 This interconnection will allow Hydro-Québec to perform arbitrage operations on the Ontario electricity market 

through the use of its large hydro power sites. 
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spot prices and futures: see for example Bystrom (2003), Bessembinder and Lemmon (2002) and 

Lucia and Schwartz (2002)). For transmission lines, the only study dealing with investment 

under uncertainty is by Martzoukos and Teplitz-Sembitzky (1992). Our results thus help 

understand the impact of regulations on the decision to invest under uncertainty, which is useful 

both to firms and to regulatory agencies. 

This paper is organized as follows. In the next section, we present our model. In Section 

3, we apply our model to Hydro-Québec’s proposed capacity addition to the interconnection of 

the Ontario/Quebec power grid; this project is presently under review by Quebec’s 

environmental regulatory agency. Section 4 offers concluding comments and discusses some 

possible extensions. 

 

2. The Model 

We consider a firm interested in developing a project such as a high voltage power line that 

interconnects two power grids. We suppose that before it can make the investment, the firm’s 

project is subject to regulatory proceedings (such as an environmental impact assessment) that 

take time TR and cost CR, which is sunk. Both TR and CR are assumed known for simplicity. The 

firm may start the regulatory review at any time. 

The firm cannot proceed with its project if the regulatory outcome is negative. If it is 

successful (with probability ( )0,1q ∈ ), however, the firm gains the possibility of investing a 

known, sunk amount CB to start its project, which begins yielding a flow of benefits after a 
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period TB (when construction is complete, for example).2 For tractability, we suppose that the 

flow of net project benefits, denoted by X, follows the geometric Brownian motion (GBM): 

,dX Xdt Xdzµ σ= +          (1) 

where: µ>0 but µ<ρ (ρ is the relevant interest rate) in order for the present value of expected 

project benefits to be finite; σ>0; and dz is the increment of a standard Wiener process (Karlin 

and Taylor 1981). 

As emphasized by Dixit and Pindyck (1994), because of uncertainty and irreversibility, a 

standard cost-benefit approach is likely to yield incorrect decisions for the timing of the 

regulatory process and of the investment.  Here there are two sources of uncertainty: the risk of 

being turned down by the regulatory body, and the randomness of project benefits. Likewise, 

irreversibility stems from the sunk costs associated with the regulatory process and from the 

implicit assumption that, once the project is built, the firm cannot recoup its investment, CB, if it 

turns out that it made a mistake. This assumption seems especially relevant for investments in 

power lines because they typically have little residual value (basically the value of scrap metal). 

In this context, it is fruitful to formulate this problem using concepts from the theory of 

real options. Thus, we see the possibility of initiating the regulatory process as a compound 

perpetual American option (we assume that the possibility to start the regulatory process does not 

expire); if it is exercised, it gives (with probability q) the firm the option (also American) of 

building its project.3 The firm thus needs to solve a compound stopping problem. First, let us 

                                                 

2 For simplicity, CB also includes the present value of maintenance and operation costs, which are assumed known. 

3 An American option can be exercised at any time until it expires. By contrast, a European option can be exercised 

only at maturity (i.e., at the end of its life). For more on options, see for example Wilmott, Howison, and Dewynne 

(1995). 
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analyze the decision to start the regulatory process. 

 

2.1 The decision to start the regulatory process 

It is intuitively clear that the firm should start this process when X is high enough (recall that X is 

the flow of net project benefits). The firm then exchanges the option to start the regulatory 

process for VR(X), the expected net present value of the project itself, corrected for the risk of not 

getting regulatory approval and for the cost of the regulatory process. Thus, for x “large enough,” 

( )( ) ,R Rx V xΦ =          (2) 

where 

( ) ( ) ( )
0

, , ; .RT
R R B R RV x C qe y T f y T x dyρ

+∞
−= − + Φ∫     (3) 

In the above, 

• -CR is the present value of the cost to the firm of the regulatory proceedings; 

• ( )0,1q ∈  is the probability that the regulatory outcome is positive; 

• ρ is the firm’s risk adjusted interest rate; 

• TR is the time required to complete the regulatory process; 

• ( ),B x tΦ  is the value of the option to build the project at time t and for X=x. ( ).BΦ  

depends explicitly on time only if the regulatory approval expires. We adjust the time 

clock here so that the regulatory review starts at time 0; and 

• ( ), ;Rf y T x  is the value at y of the probability density of X  at RT  time units after X=x. 

Since we assume that X follows a GBM, ( ), ;Rf y T x  is the lognormal density 
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( )

2

2
1 ln

21, ; ,
2

R
R

y mT
xT

R
R

f y T x e
y T

σ

σ π

−   −  
  =      (4) 

where for convenience, we introduce 

2
.

2
m σµ

 
≡ −  

 
         (5) 

However, the firm is better off waiting when X is “too low”. Let *
Rx  denote the frontier 

between the high values of X for which the regulatory process should be started and the low 

values of X for which waiting is optimal. For *(0, )Rx x∈ , the return on ( )R xΦ  per unit of time 

should equal its expected capital gains so, after using Ito’s lemma, we find that ( )R xΦ  verifies 

the well-known second-order linear ordinary differential equation (a Bellman equation):4 

( ) ( ) ( )
2 2

' '' .
2
xF x xF x F xσρ µ= +        (6) 

It is easy to check that the general solution to (6) is a combination of two power 

functions: one is negative and the other is positive. Since the option term should be finite when x 

tends towards 0, we eliminate the negative power function and find 

( ) 0 ,R x A xθΦ =          (7) 

where A0 is an unknown constant, and 

2 2

2
2

1.
m m ρσ

θ
σ

− + +
= >         (8) 

θ >1 because we assume that ρ µ> . 

                                                 

4 This approach is correct here because we assume that X=0 is a lower reflecting boundary; see Saphores 2002. 
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Since we solve simultaneously for *
Rx  and A0 in (7), we need another condition in 

addition to (2); it is the well-known “smooth-pasting” condition (Dixit and Pindyck 1994): 

( ) ( )* *

0

| , , ; | .R
R R

TR
B R Rx x x x

d dqe y T f y T x dy
dx dx

ρ
+∞

−
= =

 Φ
=  Φ 

 
 

∫    (9) 

Equations (2), (3), (7) and (9) enable us to find ΦR once ΦB is known. 

 

2.2 The decision to start construction 

Let us now consider the decision to build assuming that the regulatory green light has been 

obtained at time RT . We consider two possibilities: 1) the regulatory green light is valid forever; 

and 2) it is valid only for a limited time TA. This constraint reflects the need to revisit regulatory 

approval following changes in economic, political, or environmental conditions. When the 

authorization to build expires, the firm looses the opportunity to invest. 

 

Case 1: the regulatory green light is valid forever. 

This assumption simplifies the problem. First, the option to build does not depend explicitly on 

time (it is a perpetual American option), so we denote it by ( )B xΦ instead of ( ),B x tΦ . Based 

on arbitrage considerations, ( )B xΦ  also verifies Equation (6) for *(0, )Bx x∈ . Since ( )B xΦ  

should be finite when x is close to 0, we keep only the solution of (6) which is a positive power 

function, so that (see (8) for an expression of θ) 

( ) 0 .B x B xθΦ =          (10) 

Second, the frontier between values of X for which the firm should build and those for 

which it should wait is again independent of time since we have an autonomous problem (time 
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intervenes only through discounting). We denote this frontier by *
Bx . As before, the firm should 

wait if X is not high enough, and it should invest immediately otherwise. Thus, for *
Bx x≥ , the 

option to build equals ( )BV x , the sum of building costs plus the present value of the flow of 

expected net revenues: 

( ) ( ),B Bx V xΦ =          (11) 

where 

( ) ( )
0

( ) , ; .BT
B B BV x C e PV y f y T x dyρ

+∞
−= − + ∫      (12) 

In the above: 

• BT  is the time required to complete the project; 

• PV(y) is the present value of the flow of project benefits when X=y; and 

• ( ), ;Bf y T x  is the value at y of the probability density function of X, TB time units after 

X=x. 

A simple integration shows that the expected value of X at time t given that X(0)=y is 

( )
0

, ; tf t y dy yeµξ ξ
+∞

=∫ , so ( )

0

( ) t yPV y ye dtρ µ

ρ µ

+∞
− −= =

−∫ . Another integration then shows 

that the integral in (12) is ( )
0

( ) , ;
BT

B
xePV y f y T x dy

µ

ρ µ

+∞

=
−∫ . Hence, for *

Bx x≥ , 

( )
( )

( ) .
BT

B B B
xex V x C

ρ µ

ρ µ

− −
Φ = = − +

−
      (13) 

From (13), the “smooth-pasting” condition now becomes 

( )
*

( )
| .

B

B

T
B

x x
x e

x

ρ µ

ρ µ

− −

=

∂Φ
=

∂ −
        (14) 
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When we insert (10) into (13) and (14) to solve for *
Bx  and for B0, we find 

( )* ( ) ,
1

BT
B Bx e Cρ µθ ρ µ

θ
−= −

−
       (15) 

and 

*
0 .

1
B

B
CB x

θ

θ
−

=
−

         (16) 

A comparative statics analysis shows that, as expected, *
Bx  increases with TB, CB and σ. 

Conversely, it decreases with µ: a faster growth rate allows the firm to start the project earlier 

and thus to discount less heavily future benefits (recall that µ<ρ). With these results, we can 

derive an equation that defines *
Rx  implicitly ((A.7) in Appendix A). We solve it numerically. 

 

Case 2: the regulatory green light is valid only for a limited duration TA>0. 

In this case, for [ , ]R R At T T T∈ + , the frontier that separates the values of X for which building is 

optimal from those for which waiting is preferable depends explicitly on time; we denote it by 

( )*
Bx t . Again, it is optimum for the firm to start building X is high enough, and to wait 

otherwise. Thus, for ( )*
Bx x t≥  at [ , ]R R At T T T∈ +  , the value of the option to build equals the 

sum of the present value of costs plus the present value of the expected flow of project revenues. 

So, *[ , ],  ( ),R R A Bt T T T x x t∀ ∈ + ∀ ≥  

( )
( )

, ,
BT

B B
xex t C

ρ µ

ρ µ

− −
Φ = − +

−
       (17) 

and the “smooth-pasting” condition becomes, 

( )
*

( )

( )
,

| .
B

B

T
B

x x t
x t e

x

ρ µ

ρ µ

− −

=

∂Φ
=

∂ −
       (18) 
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As for ( )R xΦ , the return per unit of time for ( ),B x tΦ  should equal its expected capital 

gains. Time now intervenes explicitly in ( ),B x tΦ  so, when we apply Ito’s lemma, we obtain the 

second order, linear partial differential equation, valid for [ , ]R R At T T T∈ +  and for ( )*
Bx x t≤ : 

( ) ( ) ( ) ( )22

2
, , ,( ), ( ) .

2
B B B

B
x t x t X txx t x

t x x
σρ µ

∂Φ ∂Φ ∂ Φ
Φ = + +

∂ ∂ ∂
   (19) 

Moreover, we know from Saphores (2002) that a lower barrier, even when it is unattainable (i.e., 

it cannot be reached in finite time), can be important for the decision to invest. We thus assume 

that 0 is the limit of a reflecting boundary for X, so that 

[ ] ( )
0

,
, , lim 0.B

R R A x L
L

x t
t T T T

x =
→

∂Φ
∀ ∈ + =

∂
      (20) 

Finally, at time TR+TA, when the option to build expires, ΦB is exercised on the basis of a simple 

cost-benefit analysis since the firm no longer has the flexibility to delay the project. Thus, 

( )
( )( )( ), max 0, .

BT
R A

B R A R A B
X T T eX T T T T C

ρ µ

ρ µ

− − +
Φ + + = − + 

−  
  (21) 

Equations (17) to (21) fully define ( ),B X tΦ . Since there is no explicit solution for ( ),B X tΦ , 

we solve numerically using finite difference methods (see Appendix B). 

 

2.3 The deterministic case 

To better assess the impact of uncertainty on the decision to invest, let us now examine the 

deterministic case. Since σ=0 in Equation (1), a simple integration shows that the flow of project 

benefits increases at a constant rate: 

( ) ( )0 .tX t X eµ=          (22) 
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In this situation, if the project is worthwhile, the firm starts building as soon as regulatory 

approval has been secured because waiting would just reduce discounted net revenues. A limit in 

the duration of the regulatory green light is thus irrelevant here. Let T1 be the time at which the 

firm triggers the regulatory proceedings. Using (22), the firm’s objective function is5 

( ) ( )1
1

10

0
max .

R B
R B

T T T
T T T

R BT

X e
e C qe C e

µ
ρ ρ ρ

ρ µ

+ +
− − −

≤

    − + − + −    
   (23) 

We suppose again that µ<ρ because otherwise waiting forever would be optimal.  Solving the 

corresponding necessary first order condition for an interior solution (T1>0), we find 

( )1 ( )( )
( )1 ln .

0

R

R B

T
R B

T T
C qC eT

qX e

ρ

ρ µ
ρ

µ

−

− − +

 +
 =
 
 

       (24) 

( )RT
R BC qC e ρρ −+  represents annualized project costs and ( ) ( )( )0 R BT TqX e ρ µ− − +  is the value  of 

the flow of project benefits at the end of the construction phase if X=X(0) at T1. Both costs are 

expressed in $ at the start of the regulatory process. When we combine (24) and (22) to get the 

value of X at which the regulatory process should start, we see that T1 is simply the time 

necessary for the flow of project benefits to equal annualized project costs: 

( )
*

0 ( )
( ) .

e

R

R B

T
R B

R T T
C qC ex

q

ρ

ρ µ
ρ −

− − +

+
=         (25) 

Finally, inserting (24) into (23), we find that Q*, the optimal net profit of the firm, is 

                                                 

5 For the stochastic problem, the decision to start the regulatory process does not depend explicitly on time but on 

the level of X; we don’t know what value X will have at a given time in the future, so we start the clock when the 

firm starts the regulatory process. By contrast, in the deterministic case, the firm knows perfectly how X changes 

over time and it can immediately make all necessary decisions. 
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( )( )
*

*
0

(0) (0) .
R BT T

R

qX e XQ
x

ρ
ρ µ µµ

ρ µ ρ

− − +  
=  

−   
     (26) 

A comparative statics analysis shows that: 

• T1 is an increasing function of CR, CB, TB, and ρ. Indeed, with higher regulatory or 

construction costs, the project is initially less attractive so the firm waits until project 

benefits increase over time. A longer time to build has the same impact because it reduces 

the present value of project benefits. Similarly, a higher discount rate decreases future 

benefits more than project costs since these are incurred upfront. 

• T1 is a decreasing function of q and µ. This also makes sense intuitively: as the 

probability of regulatory success increases, so does the value of the project and the firm 

acts earlier. Likewise, if X increases faster, the firm acts earlier as the discount rate is 

larger than the growth rate (ρ>µ). 

• Interestingly, however, T1 first decreases and then increases as TR, the time to complete 

the regulatory review, increases. The reason is simple: for “small” values of TR (i.e., for 

1 ln B
R

R

qCT
C

µ
ρ ρ µ

 
<  − 

), a small increase in the length of the regulatory process leads to 

a slight discount of future project benefits but this effect is more than offset by the 

increase in project benefits (µ>0); acting sooner is therefore optimal. The reverse is true 

for “large” values of TR (i.e., for 1 ln B
R

R

qCT
C

µ
ρ ρ µ

 
>  − 

). 

• Since 1*
0 (0) T

Rx X eµ= , *
0Rx  and T1 vary similarly with CR, CB, TR, TB, q, and ρ. The same 

holds for µ since 1
1

1 0R B
T

T T T
µ µ

∂
= − + + <  ∂

 and 1
*

0 (0) 0TR
R B

x
T T X eµ

µ
∂

= − + <  ∂
. 
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• Finally, for obvious reasons, Q* is a decreasing function of CR, CB, TR, TB, and ρ, and an 

increasing function of q and µ. 

 

3. Application to the decision to build a power line 

3.1 Data 

We apply our model to one of Hydro-Québec’s (HQ) recent project proposals (1998) to build a 

1250 MW interconnection in the Outaouais region.  This interconnection would unable HQ, a 

Quebec-owned utility, to link Quebec’s transmission line network to Ontario’s and to the other 

networks connected to Ontario’s power grid (they include western New York and Michigan). 

Two reasons are given to justify the proposed investment.  First, this interconnection 

would insure a more secure electricity supply for Quebec.  HQ’s domestic production and 

transmission capacity is concentrated, which makes it vulnerable to catastrophic events.  Access 

to Ontario could provide additional supply to Quebec in case of a domestic breakdown.  

Second, the interconnection would provide more exchange opportunities in the 

deregulated wholesale electricity market of Ontario.  HQ’s main activity would be to import 

electricity when outside power prices are low.  Water supplies in hydroelectric complexes would 

be used to export electricity when outside prices are high.6  For this illustration, we focus on the 

commercial aspects of the project because the assessment of the value of an additional supply 

source in the case of an emergency adds further complex issues that are not addressed here. 

                                                 

6 Most of HQ’s production capacity is hydroelectric.  Because this technology is flexible, HQ can easily adjust its 

production, which is not the case for producers in Ontario and in parts of United States; they rely on thermal (fossil 

and nuclear fuels) power plants. 
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According to Report 143 of the “Bureau d’Audiences Publiques sur l’Environnement” 

(BAPE), HQ estimates that it would take two years (TB=2) and approximately 185 million dollars 

(CB=185) to build the interconnection.7  Before HQ can invest, however, it must go through an 

environmental regulatory process to obtain approval.  According to the Quebec Ministry of 

Natural Resources (QMNR) which supervises HQ’s operations, this process can take as long as 

two years (TR=2) and cost approximately 2 million dollars (CR=2).  The QMNR does not want to 

speculate on the probability of success for this kind of proposal (note that this project is currently 

under review), so we assume here that HQ has a 50% chance of getting approval (q=0.5). 

Four more parameters are needed: the discount rate ρ; the infinitesimal growth rate µ and 

the variance parameter σ for X ; and the expiry time of the regulatory approval TA.  For ρ, the 

QMNR estimates that for this type of investment, HQ requires a 10% annual rate of return.  In 

BAPE’s Report 143, HQ does not detail its revenues from arbitrage activities (it is private 

information), so it is not possible to construct a time series for X  in order to estimate µ and σ.  

We thus choose an arbitrary but plausible value for µ of 2% per year, and we vary σ between 

0.15 and 0.8 per year . 

Finally, the QMNR gives no official expiry time for the regulatory approval.  However, if 

HQ waits too long before investing, the QMNR can force HQ to undergo another regulatory 

review.  To round up the list of parameters for our base case, we suppose that TA equals 7 years. 

Since there is some substantial uncertainty concerning the value of some of our model 

parameters, we conduct an extensive sensitivity analysis.  We consider the following parameter 

values: q∈{0.25, 0.5, 0.75}; TA∈{3, 5, 7, 10, +∞}, in years; CR∈{1, 2, 4}, in $ million; 

                                                 

7 All $ amounts in this paper are in Canadian dollars. 
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CB∈{150, 185, 220}, in $ million; and µ ∈{0.01, 0.02, 0.044}, per year, in addition to 

systematically varying σ between 0.15 and 0.8 per year . 

 

3.2 Results 

Our main results are summarized on Figures 1 to 3.  We are particularly interested in how 

uncertainty combines with the regulatory parameters (q, CR, and TA) to influence the optimal 

regulatory threshold *
Rx . 

Figure 1 illustrates how *
Rx  varies with the volatility in net arbitrage revenues, σ, for 

three different values of the probability of regulatory approval, q. As for the deterministic case, 

we observe that, as q increases, *
Rx  decreases. It is interesting to note, however, that *

Rx  is not a 

monotonic function of σ: initially it increases and then it decreases as σ increases; this is more 

apparent for higher values of q. To understand this result, take the logarithm of X; from Ito’s 

lemma, the logarithm of X follows a Brownian motion with trend 
2

2
σµ −  and variance 2σ . A 

large volatility is thus akin to considering a project whose value is trending down (its trend 

would be 
2

0
2

σµ − < ), so it is optimal for the firm to act earlier. 

The same phenomenon is apparent when we analyze *
Rx  for different values of the cost of 

the regulatory process, CR, or of the duration of the regulatory process, TR (these results are not 

shown). As for the deterministic case, when CR increases, so does *
Rx : the firm needs to wait for 

a larger value of the benefits flow before the project is worthwhile. For the range of parameters 

explored here, *
Rx  decreases when TR increases: as for the deterministic case, for “small” values 
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of TR, a small increase in the length of the regulatory process discounts slightly future project 

benefits but this effect is more than offset by the increase in project benefits so acting sooner is 

optimal. In addition, the difference between the *
Rx s for different values of CR or of TR increases 

with σ, just as it does for different values of q: uncertainty thus exacerbates errors if q, CR or TR 

are known imperfectly. Moreover, *
Rx  is consistently above the deterministic threshold *

0Rx , for 

smaller values of σ. If uncertainty is ignored in that case, the regulatory process is thus started 

prematurely. 

Figure 2 shows how the duration of the validity of regulatory approval, TA, affects *
Rx . 

We observe that for σ given, as TA decreases *
Rx  increases: as the firm has a smaller window of 

opportunity to invest, it waits for a more attractive potential payoff. In addition, while the action 

threshold to start the regulatory process first increases with σ (before decreasing when 

uncertainty is large enough), *
Rx  is monotonically decreasing when TA =+∞ for the range of 

variances considered: assuming that TA =+∞ when it is finite, even large (e.g., TA =10 years), 

may thus lead to sub-optimum decisions. 

Figure 3 illustrates the variations of the optimal threshold to start investment *
Bx  with 

uncertainty for different values of TA. Of course, *
Bx  depends neither on TR, CR, nor on q. 

Whereas *
Rx  is a concave function of σ that first increases and then decreases when uncertainty 

is large enough, *
Bx  is convex increasing. Indeed, a higher volatility increases both the incentive 

to wait and the opportunity cost of not investing because the risk of small values for X is 

bounded from below: our assumption that X admits a lower reflecting barrier guarantees that a 
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higher level of uncertainty will lead to potentially higher payoffs.8 This explains that our results 

differ from the findings of Bar-Ilan and Strange (1996) because they consider a lower absorbing 

barrier where the project is abandoned. Our results also show that their findings depend more on 

the nature of the lower absorbing barrier than on the existence of investment lags (on the 

importance of barriers when investing, see Saphores 2002). In addition, we note that *
Bx  

increases with TA: when the regulatory green light lasts longer, the firm can invest at higher 

levels of the flow of benefits. 

Finally, our sensitivity analysis (results not included here) shows that both *
Rx  and *

Bx  

decrease when µ  increases, although they both vary relatively little when µ changes from 0.01 to 

0.03 per year. In addition, both *
Rx  and *

Bx  decrease with CB and increase with TB. The intuition 

for these results is the same as for the deterministic case. 

 

4. Conclusions 

In this paper, we extend a simplified version of Bar-Ilan and Strange’s model (1996) to analyze 

the optimal decisions of a firm that needs to undergo a costly and time-consuming regulatory 

review in order to make a lagged, irreversible investment whose value varies randomly.  Our 

numerical application to Hydro-Québec’s proposal to build a 1250 megawatts interconnection to 

the Ontario power grid shows that the decision to start the regulatory review and the decision to 

start the project after regulatory approval has been secured vary quite differently with 

uncertainty. Indeed, the first one is a non-monotonic, concave function of uncertainty, while the 

                                                 

8 McDonald and Siegel (1986), for example, also obtain this result but they do not make clear that it depends on a 

hidden assumption regarding the nature of the zero boundary. 
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second is an increasing convex function of uncertainty; both are sensitive to the duration of the 

regulatory green light. These results underscore the need for transparent regulatory proceedings. 

They are a first step towards understanding the impact of regulatory requirements such as 

environmental impact assessments on the decision to invest. 

Future research could consider a number of extensions, including: stochasticity in the 

duration and/or the cost of the regulatory process (i.e., TR and/or CR are random); alternative 

stochastic processes for X; uncertainty in building costs (i.e., CB stochastic); and a general 

equilibrium analysis of the impact of environmental impact assessments.  In addition, it would be 

instructive to model construction in details along the lines suggested in Majd and Pindyck (1987) 

or Milne and Whalley (2000).  Finally, as more information becomes available and as 

deregulated electricity markets stabilize, it would be very useful to estimate actual arbitrage 

revenues from interconnecting power grids. 
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Appendix A: Implicit Equation for *
Bx  

 

*
Bx  is the value of X above which construction should start when regulatory approval is valid 

forever ( AT = +∞ ). We first derive an expression for VR(x) that incorporates (15) and (16). As 

emphasized above, ( ) 0B x B xθΦ =  is valid only for *(0, )Bx x∈ . For *
Bx x≥ , construction should 

start immediately and the option to build is ( )
( ) BT

B B
xex C

ρ µ

ρ µ

− −
Φ = − +

−
 (see (13)). Thus, if the 

firm were to start the regulatory review when X=x, the net present value of the whole project 

would be 

( )

( )
( )

( )
*

*
0

0

  , ; , ; .
B B

R

B

R R

x T
T

R B R
x

V x C

yeqe B y f y T x dy C f y T x dy
ρ µ

ρ θ

ρ µ

∞ − −
−

= − +

  
  + − +

  −  
∫ ∫

 (A.1) 

For γ≥0, let us first calculate 

( )
*

0

( ) , ; ,
Bx

RI x y f y T x dyγ
γ ≡ ∫         (A.2) 

where ( ), ;Rf y T x  is the lognormal distribution given by (4). After the change of variables 

2ln( ) ln( ) ( ) R

R

y x m Tz
T

γσ
σ

− − +
=  with 

2

2
m σµ

 
≡ −  

 
 in (A.2), we obtain 

2 2
* 22 ln( ) ln( ) ( )( ) .

Rm T
B R

R

x x m TI x x e
T

γ σγ
γ

γ
γσ

σ

 
+  

 
 − − +

≡ Φ   
 

    (A.3) 

Φ(.) is the standard normal cumulative distribution function. Thus, 
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( ) ( )
*

*
0

0

, ; 1 , ; 1 ( ),
B

B

x

R R
x

f y T x dy f y T x dy I x
+∞

= − = −∫ ∫      (A.4) 

and using the expression of the expected value of a lognormally distributed random variable, 

( ) ( ) ( )
*

2

*

0.5
1

0

, ; , ; ( ).
B

R R

B

x
m T T

R R
x

yf y T x dy xe yf y T x dy xe I x
σ µ

+∞
+

= − = −∫ ∫   (A.5) 

Combining (A.1), (A.4), and (A.5) leads to: 

( ) [ ]
( )

0 0 1( ) 1 ( ) ( ) .
B

R R
T

T T
R R B

eV x C qe B I x C I x xe I x
ρ µ

ρ µ
θ ρ µ

− −
−

   = − + − − + −  −  
 (A.6) 

If we now combine (A.6) with (2), (9), and (7), we get the equation verified by 
*

*
R

B

x
x

ξ = : 

1 1

0 0

( ) ( 1)[ ( )] ( )

( 1) ( ( ) 1) ( ) 0,

R

R

T

T
R

B

g e G g

C eG y g y
C q

µθ
θ

ρ

ξ ξ θ θ ξ ξ ξ

θ θ θ

 + − − − 
  + − − + − = 
  

     (A.7) 

where for {0,1, }γ θ∈ , 

 

2 2

2 2

2
2

2 2
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ln( ) ( )
( ) .
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R

R
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T T
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γ

ξ γσ
ξ

σ

ξ γσ
ξ φ

σ σ

 
+  
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 − − +
≡ Φ   

 

 − − +
≡   

 

     (A.8) 

φ(.) is the standard normal density function. 
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Appendix B: Numerical Solution of ( ),B x tΦ  

 

To obtain *
Rx , we first need to approximate ( ),B x tΦ .  Following Wilmott, Howison and 

Dewynne (1995) and Saphores (2000), we transform Equations (17) to (21) by making the 

change of variables: 

( ) ( )2
2,  ,  , , ,z z

B A B BX C e t T X t C e u zα βττ τ
σ

+= = − Φ =     (B.1) 

where α  and β  solve the system: 

( )
( )

2 1 ,

0 2 1 ,

k w

k

β α α

α

 = + − −


= + −
        (B.2) 

with 2
2k µ
σ

=  and 2
2w ρ
σ

= . 

We obtain the non-dimensional heat diffusion problem: 

( )

( ) ( ) ( )

2
*

2

*

,  for ,

, , ,  for ,

B

B

u u z z
z

u z h z z z

τ
τ

τ τ τ

∂ ∂
= <

∂ ∂
 = ≥

       (B.3) 

where 

( )
( ) ( ) ( ) ( )21 1 11 4 1 1

4 2 2, max 0, .
Bk w k z k z T

h z e e e
τ ρ µ

τ
 − + − + − −  

 
 = − +
  

   (B.4) 

The initial condition is 

( ) ( )
( ) ( ) ( )1 11 1

2 2,0 ,0 max 0, .
Bk z k z T

u z h z e e
ρ µ− + − − 

 = = − +
  

    (B.5) 

Because of the lower reflecting barrier at X=0, we also need: 
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( ) ( ) ( )1 ,
lim , 0.z

z

u z
e u z

z
α βτ τ

α τ− +

→−∞

 ∂ 
+ =  ∂   

     (B.6) 

In addition, to prevent arbitrage opportunities, the following constraint is required: 

( )
( ) ( ) ( ) ( )21 1 11 4 1 1

4 2 2, max 0, .
Bk w k z k z T

u z e e e
τ ρ µ

τ
 − + − + − −  

 
 ≥ − +
  

   (B.7) 

Finally, u  and u z∂ ∂  must be continuous at ( )*
Bz z τ= . 

To avoid tracking the free boundary, we use the linear complementary formulation 

( ) ( )( )

( ) ( )( )

2

2

2

2

0, , , 0,

, , 0,

u u u z h z
z

u u u z h z
z

τ τ
τ

τ τ
τ

 ∂ ∂
− ≥ − ≥  ∂ ∂ 


 ∂ ∂ − ⋅ − =  ∂ ∂ 

      (B.8) 

Both expressions in the first part of (B.8) are equalities at the free boundary. 

We solve the above problem using the Crank-Nicholson finite difference scheme and the 

projected successive over-relaxation (PSOR) algorithm (see Wilmott, Howison and Dewynne 

1995) with 0.01zδ = ; a grid for z with 1400N − =  and 800N + = ; and time steps equivalent to 

3 days.  Details are available from the authors.  To obtain the option value function, we reverse 

the change of variables. 

Once we have an approximation of ( ),0B xΦ , we combine the continuity and smooth-

pasting conditions to approximate *
Rx .  Taking their ratio, we find that *

Rx  satisfies: 

( )
( )

* *

*
.

R R R

R R

dV x x
dx V x

θ=         (B.9) 

We use the bisection method to find the zero of (B.9). 
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Figure 1: *
Rx  versus σ for different probabilities of regulatory success. 

 

Notes: Results above are generated with TB=2 years, CB=$185 million, TR=2 years, CR=$ 2 

million, µ=0.02 per year, ρ=0.1 per year, and TA= 7 years. q is the probability of regulatory 

approval. 
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Figure 2: *
Rx  versus σ for different durations of the regulatory authorization. 

 

Notes: Results above are generated with TB=2 years, CB=$185 million, TR=2 years, CR=$2 

million, q=0.5, µ=0.02 per year, and ρ=0.1 per year. TA is the duration of the regulatory green 

light to proceed with the project. 
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Figure 3: *
Bx  versus σ for different durations of the regulatory authorization. 

 

Notes: Results above are generated with TB=2 years, CB=$185 million, µ=0.02 per year, and 

ρ=0.1 per year. TA is the duration of the regulatory green light to proceed with the project. 
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