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Abstract

In this paper we consider the analysis of semiparametric models for binary panel data with
state dependence and serial correlation. A hierarchical approach is used in addressing het-
erogeneity, dealing with the initial conditions, and incorporating correlation between the
covariates and the random effects. We consider a semiparametric specification in which a
Markov process smoothness prior is used to model an unknown regression function. The pa-
per presents new computationally efficient Markov chain Monte Carlo estimation algorithms.
Simulation results suggest that the methods perform well. In addition to estimation, we ad-
dress the problem of model choice and compare competing parametric and semiparametric
specifications. Moreover, we present a framework for calculating the average covariate effects,
which deals with the nonlinearity and dynamic structure of the model. The techniques of
this paper are used to study the intertemporal labor force participation decisions of a panel
of 1545 married women. In this application, the data support a semiparametric model with
multiple sources of heterogeneity and multi-lag state dependence.
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1 Introduction

This article discusses techniques for analyzing semiparametric models for dynamic binary panel

data, and applies them to study women’s labor force participation choices using data from

the Panel Study of Income Dynamics (PSID). We adopt a hierarchical Bayesian approach to

integrate and extend a number of modeling and estimation techniques and provide a flexible

specification and inferential framework for models with multidimensional heterogeneity, general

dynamic dependence, and nonparametric functional form. In addition, we address the problem
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of model choice and propose a simulation-based approach for evaluation of the average covariate

effects. The former enables the formal comparison of semiparametric to parametric models; the

latter provides interpretability of the estimates.

Let yit be the binary response of interest, where the indices i and t (i = 1, ..., n, t = 1, ..., Ti)

refer to units (individuals, firms, countries, etc.) and time, respectively. We consider a dynamic

partially linear binary choice model where yit depends parametrically on the covariate vectors

x∗
it and wit, and nonparametrically on the covariate sit in the form

yit = 1{x∗′
itδ + w′

itβi + g (sit) + φ1yi,t−1 + ...+ φJyi,t−J + εit > 0}, (1)

where 1{·} is an indicator function, δ and βi are vectors of common and unit-specific (random)

effects, respectively, φ1, ..., φJ are lag coefficients, g (·) is an unknown function, and εit is a

possibly serially correlated error term. Inclusion of a general number of lags yi,t−1, ..., yi,t−J in

(1) captures the notion of “state dependence”, where the probability of response may depend on

past occurrences because of altered preferences, trade-offs, or constraints.1 The individual effects

βi account for heterogeneity in the effects of the covariates wit, but modeling heterogeneity is

also essential in guarding against the emergence of “spurious state dependence”, where temporal

pseudodependence occurs because history may serve as a proxy for the unobserved unit-specific

propensities to experience the event (Heckman 1981, Hsiao 1986). As discussed in Section 2.1,

we allow the heterogeneity to depend on the initial observations and the covariates.

The semiparametric model specified in (1) is new in the analysis of binary panel data. Much

of the recent work on dynamic binary panel data models (Hyslop (1999), Honoré and Kyriazidou

(2000), Klaassen and Magnus (2001)), has emphasized parametric specifications. An exception is

the semiparametric extension discussed in Honoré and Kyriazidou (2000), although they do not

consider serial correlation in the errors and restrict heterogeneity to the intercept. In contrast,

the approach taken here can simultaneously accommodate a partially linear index function,

general state dependence, serial correlation, and multiple correlated random effects, but in the

setting of known disturbance and random effect distributions. The overall approach here can

be viewed as an extension of the Bayesian nonparametric modeling of Wahba (1978), Shiller

1Typical examples include applied problems such as the analysis of investment, transportation, health status
and illness recurrence, fertility decisions, accident occurrence, employment, and labor union participation.
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(1984), Wood and Kohn (1998), and Fahrmeir and Lang (2001) to a dynamic panel data model.

For an overview of partially linear models for cross-section data, see DiNardo and Tobias (2001)

and Yatchew (1998).

The presence of the nonparametric function in the binary response model in (1) raises a

number of challenges for estimation due to the intractability of the likelihood function. Many

of the problems have been largely overcome in the Bayesian context by Wood and Kohn (1998),

Shively et al. (1999), and Wood et al. (2002), based on the Markov chain Monte Carlo (MCMC)

framework for dealing with binary data proposed in Albert and Chib (1993). One open problem,

however, is the question of model comparison in the semiparametric setting. Previous work in

settings with cross-sectional binary data has relied on measures such as the AIC and the BIC,

but their computation is infeasible in our context. We extend that literature by showing how

the problem can be tackled formally through the calculation of marginal likelihoods and Bayes

factors. Another open problem is the analysis of semiparametric models with serially correlated

errors. The issue has been studied in Diggle and Hutchinson (1989), Altman (1990), and Smith

et al. (1998), however their estimation algorithms are O(N3), where N =
∑n

i=1 Ti is the total

number of observations in the sample. Here we propose a new O(N) algorithm for estimation

of the nonparametric function when the errors are correlated. The computations are carried

out by a simulation algorithm that exploits the panel structure of the data to orthogonalize the

errors before simulating the unknown functions. Yet another open problem is the interpretation

of the coefficients in the setting of such non-linear models. We develop a predictive framework

for calculating and describing the average effect of a given covariate x on the probability of

response, both contemporaneously and over time.

We apply our model and methods to the setting of Hyslop (1999), who studied women’s labor

force participation using dynamic probit and linear probability models. While women’s labor

supply in the U.S. has increased on the intensive (hours of work) margin, the most important

development has been the increase on the extensive (participation) margin. In the case of

married women, Goldin (1989) reports that the seven-fold increase in participation since the

1920’s has not been associated with a substantial increase in average work experience among

employed married women. In a recent survey of the labor supply literature, Heckman (1993)
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underscores the importance of participation decisions and concludes that much of the elasticity

of estimated labor supply functions comes through entry and exit decisions. One of the salient

features of these participation choices, which is also essential for policy considerations, is their

state dependence. However, Hyslop (1999) notes that despite its importance, the intertemporal

labor supply behavior of women remains one of the most difficult areas of applied labor supply

research. We augment Hyslop’s findings by estimating several parametric and semiparametric

specifications that differ in their dynamics, heterogeneity, and functional form. These models

are then compared to gauge the appropriateness of the underlying statistical specifications. The

results from our regressions strengthen Hyslop’s (1999) finding that participation is characterized

by significant state dependence; properly accounting for those dynamics is crucial in eliciting the

effects of the other covariates (e.g. fertility decisions, race, husband’s income) on participation.

We also find support for the presence of heterogeneity in the effect of children on the mother’s

labor supply (Angrist and Evans 1998). This heterogeneity is correlated with the husband’s

income. The analysis also indicates that age is non-linearly related to labor force participation.

The rest of the paper is organized as follows. In Section 2 we complete the statistical model.

In Section 3 we present our MCMC based fitting methods and in Section 4, we show how the

average effects of the covariates on the probability of response are calculated. Section 5 is con-

cerned with the comparison of the model to various alternatives, based on marginal likelihoods

and Bayes factors. Section 6 presents a detailed simulation study of the performance of the

estimation method. In Section 7 we study the intertemporal labor force participation of a panel

of married women. Concluding remarks are presented in Section 8.

2 Statistical Modeling

2.1 Hierarchical Modeling of the Unobserved Effects

To explain the heterogeneity modeling, and in anticipation of the subsequent estimation of the

model by the approach of Albert and Chib (1993), we begin by rewriting the model in (1) in

terms of the latent variables {zit} as

zit = x∗′
itδ + w′

itβi + g(sit) + φ11 {zi,t−1 > 0} + ...+ φJ1 {zi,t−J > 0} + εit
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where yit = 1 {zit > 0} and εit ∼ N (0, 1) for all i and t.2 Let yi0 ≡ (yi,−J+1, ..., yi0)
′ be the J-

vector of initial observations for subject i, yi ≡ (yi1, ..., yiTi
) denote the remaining Ti observations

in the ith cluster, and define the lag vectors

yi,−j ≡ (yi,1−j , ..., yi,Ti−j) = (1 {zi,1−j > 0} , ..., 1 {zi,Ti−j > 0}) , j = 1, ..., J.

Then, for the observations in the ith cluster we have that

zi = X∗
i δ + Wiβi + gi + Liφ+ εi (2)

where zi = (zi1, ..., ziTi
)′, X∗

i =
(

x∗
i1, ...,x

∗
iTi

)′
, Wi = (wi1, ...,wiTi

)′, gi = (g (si1) , ..., g (siTi
))′,

si = (si1, ..., siTi
)′, Li = (yi,−1, ...,yi,−J), φ = (φ1, ..., φJ)′, and εi = (εi1, ..., εiTi

)′ is distributed

as multivariate normal with mean zero and an identity covariance matrix.3 Subsequently, we

will also consider a model in which the errors are serially correlated.

Now consider the modeling of the unobserved effects. Based on Mundlak (1978), Cham-

berlain (1984), and Wooldridge (2000), we assume that the distribution of the q-vector βi is

Gaussian with mean value that depends on the initial observations yi0 and the covariates. In

particular, we let

βi|yi0,X
∗
i ,Wi, si, γ,D ∼ N (Aiγ,D) , i = 1, ..., n, (3)

or equivalently

βi = Aiγ + bi, bi ∼ N (0,D) , i = 1, ..., n, (4)

where the matrix Ai can be defined quite flexibly, given the specifics of the problem at hand. In

the simplest case where Wi does not include an intercept and βi is independent of the covariates,

a parsimonious way of modeling the dependence of βi on yi0 is to let Ai be a q×2q matrix given

by Ai = I ⊗ (1, ȳi0), where ȳi0 = (1/J)
∑0

j=1−J yij is the mean of the entries in yi0. Moreover,

the matrix Ai may also contain within-cluster means of a subset of covariates – those which are

suspected of being correlated with the random effects for each cluster (Mundlak 1978). If r̄ij

2In the pre-sample (t = −J + 1, ..., 0), the latent data {zit} are not modeled and, for the purposes of this
discussion, can simply be taken to equal the corresponding pre-sample {yit}.

3In the above, the vectors x
∗
it and wit contain two disjoint sets of covariates and because g (·) is unrestricted,

x
∗
it does not include an intercept or the covariate sit, although those may be included in wit.
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(j = 1, ..., q) denotes the vector of such covariate means, the general Ai may be written as

Ai =







1 ȳi0 r̄′i1
. . .

1 ȳi0 r̄′iq






(5)

where the dimension of r̄ij depends on how many column averages of X∗
i , Wi, and si were

allowed to influence the respective random effect. The mean E (βi|yi0,X
∗
i ,Wi, si, γ,D) need

not necessarily be modeled as a linear function. In such cases, modeling can rely on higher order

terms or other summaries of the covariates to the matrix Ai.

It can be seen that upon utilizing (4), equation (2) can be equivalently expressed as

zi = Xiβ + gi + Wibi + εi (6)

where

Xi =
(

X∗
i WiAi Li

)

and

β =
(

δ′ γ′ φ′
)′
.

We note that neither si nor an intercept should be present in the matrix Xi, which achieves the

dual purpose of allowing for useful modeling of the inter-cluster heterogeneity, but at the same

time resolves the identification problem under a general, unrestricted g (·). In more general

specifications where a random intercept is included in the model, one has to adjust Ai for

identification purposes. If the random intercept is the ith column of Wi, the column of Ai

which is an ith unit vector should be dropped so that WiAi does not include an intercept.

Similarly, if si is the jth column of Wi, the column of Ai which is a jth unit vector should

be dropped so that the product WiAi does not contain si. It should also be noted that the

presence of an unrestricted g (·) does not prevent the inclusion of temporally invariant covariates

(e.g. gender, race, various dummies) in either X∗
i or Wi, as long as these vary among clusters.

One should be aware, however, that their simultaneous inclusion into Ai to model correlation

with a random intercept leaves the likelihood unidentified (since WiAi will cause Xi to contain

two or more identical columns across all i).

The hierarchical structure of the model is completed by the introduction of (semi-conjugate)

prior densities for the model parameters β and D. Gaussian priors are used to summarize the
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prior information about the k-vector β, while a Wishart prior is used for the q× q matrix D−1:

β ∼ N (β0,B0), D−1 ∼ W (r0,R0) . (7)

The specification of the prior for the function g (·) is discussed next.

2.2 The Prior on g (·)

We place a Markov process smoothness prior on the function g (·). A range of similar smoothness

priors can be found in the literature on nonparametric modeling; for some specific examples, see

Shiller (1973, 1984), Wahba (1978), Silverman (1985), Besag et al. (1995), Fahrmeir and Tutz

(1997, Chapter 8), Fahrmeir and Lang (2001), and Koop and Poirier (2004). While these priors

differ in the specifics, they all rest on the idea that local variation in the function, as measured

by changes in its derivatives or divided differences, should not be too large. The roots for this

method can be traced back to Whittaker’s (1923) penalized least squares criterion, where the

aim is to strike a balance between a good fit and a smooth regression function. Some discussion

on the similarities between these priors is offered in Shiller (1984), Silverman (1985), Besag et al.

(1995), Fahrmeir and Tutz (1997), and Fahrmeir and Lang (2001). It is also interesting to note

that the Bayesian and non-Bayesian approaches to nonparametric modeling are quite similar

because there is a direct correspondence between Bayesian priors on the unknown function and

the penalties that frequentists specify in penalized likelihood estimation.

In our context, suppose that the N observations in the covariate vector s determine the m×1

design point vector v with entries equal to the unique ordered values of s with

v1 < ... < vm,

and with

g = (g (v1) , ..., g (vm))′ = (g1, ..., gm)′ , (8)

being the corresponding function evaluations. The idea is to model the function evaluations as

a stochastic process that controls the degree of local variation between neighboring states in g.

In our implementation, the function evaluations are modeled as resulting from the realization of

a second order Markov process, with the specification aimed at penalizing rough functions g (·).
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Defining ht = vt − vt−1, the second order random walk specification is given by

gt =

(

1 +
ht

ht−1

)

gt−1 −
ht

ht−1
gt−2 + ut, ut ∼ N

(

0, τ2ht

)

, (9)

where τ2 is a smoothness parameter. Small values of τ2 produce smoother functions; larger

values allow the function to be more flexible and interpolate the data more closely. The weight

ht adjusts the variance to account for possibly irregular spacing between consecutive points in

the design point vector. Other possibilities are conceivable for the weights (e.g. see Shiller 1984,

Besag et al. 1995, Fahrmeir and Lang 2001); the one given here implies that the variance grows

linearly with the distance ht, a property satisfied by random walks. This linearity is appealing

because it implies that conditional on gt−1 and gt−2, the variance of gt+k, k ≥ 0, will depend

only on the distance vt+k − vt−1, but not on the number of points k that lie in between.

To complete the specification of the smoothness prior, we provide a distribution for the initial

states of the random walk process

(

g1
g2

)

|τ2 ∼ N

((

g10
g20

)

, τ2G0

)

, (10)

where G0 is a 2× 2 symmetric positive definite matrix. The prior on the initial conditions (10)

induces a prior on linear functions of v, which is equivalent to the usual priors placed on the

intercept and slope parameters in univariate linear regression. This can be seen more precisely

by iterating (9) in expectation (to eliminate ut which is the source of the nonlinearity), starting

with initial states as specified in (10). Thus, conditional on g1 and g2, the mean of the Markov

process in (9) is a straight line that goes through g1 and g2. As a consequence, the intercept

and slope of that line will have a distribution that is directly related to the distribution in (10)

in a one-to-one mapping. This is useful in setting the prior parameters g10, g20, and G0. For

example, if v1 = 0, v2 = 1, and τ2 = 1, the unconditional mean of the Markov process under

g10 = 0, g20 = 0, and G0 = I, is equivalent to a prior of N (0, 1) on the intercept and N (0, 2)

on the slope parameter in a corresponding linear model.

The directed Markovian structure of the random walk prior specified by (9) and (10) em-

phasizes a local smoothness penalty. An equivalent (global) smoothness prior for g results after
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rewriting the Markov process in a random field form. To see this, note that after defining

H =



















1
1

ht

ht−1
−

(

1 + ht

ht−1

)

1

. . .
. . .

. . .
hm

hm−1
−

(

1 + hm

hm−1

)

1



















,

and

Σ =











G0

h3

. . .

hm











,

the global smoothness representation of the second order Markov process prior equivalent to (9)

and (10) becomes

g|τ2 ∼ N
(

g0, τ
2K−1

)

, (11)

where g0 = H−1g̃, with g̃ = (g10, g20, 0, ..., 0)′, and the penalty matrix K is given by K =

H′Σ−1H. Equivalently, g0 can be derived by taking recursive expectations of (9) starting with

the mean in (10), and as argued above, the points in g0 will form a straight line.

A key feature of the prior in (11) is that it is proper. This simple innovation offers an

important refinement on much of the literature on smoothness priors for nonparametric function

estimation where, in contrast, partially improper priors and reduced rank penalty matrices K are

used. Since improper priors preclude the possibility for formal finite sample model comparison

using marginal likelihoods and Bayes factors, our approach removes an important impediment

to formal Bayesian model selection. We discuss the approach to model selection in Section 4

below. Since the prior on g is defined conditional of the hyperparameter τ2, in the next level of

the hierarchy we specify the prior distribution

τ2 ∼ IG

(

ν0

2
,
δ0
2

)

. (12)

In setting the parameters ν0 and δ0 it is helpful to use the well known mapping between the

mean and variance of the inverse gamma distribution and the parameters ν0 and δ0 (e.g. Gelman

et al. (1995, Appendix A)). How the choice of these parameters will affect the estimated g will

depend on the other sources of variance in the model. Some intuition about this can be gained

by considering the sampling algorithm we present in the next section, where in the sampling
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of g, the inverse of τ2 weighs the components of the smoothness prior K and g0. Thus, τ2

competes with the inverse of the error variance, which weighs the function g that maximizes the

fit in the likelihood (thus illustrating the trade-off between smoothness and good fit that was

discussed in Whittaker (1923)).

We conclude the discussion on Markov process priors by making two remarks. First, from

an estimation point of view, it is important to note that the penalty matrix K is banded. This

fact is of considerable practical utility, as manipulations involving banded matrices take O(m)

operations, rather than the usual O(m3) for inversions or O(m2) for multiplication by a vector.

Given that m may be large (potentially as large as the total number of observations N in the

panel) this has important ramifications for the numerical efficiency of the estimation procedure.

Second, Markov process priors are conceptually simple and easily adaptable to different orders,

enabling them to match problem-specific tasks more closely (Besag et al. (1995), Fahrmeir and

Lang (2001)). For example, a simple first order Markov process prior gt = gt−1 + ut penalizes

abrupt jumps gt−gt−1 between successive states of the random walk process, while higher order

priors embody more complex notions of “smoothness” related to the rates of change in the

function. Such priors share many similar features and are easily specified using the general ideas

outlined above.

3 Estimation

We first address the Bayesian estimation of the semiparametric model with unobserved hetero-

geneity and state dependence. The estimation algorithm is based on MCMC simulation of the

posterior distribution (see Chib (2001) for details of these methods). We then provide a new

method for models with serial correlation in the errors.

3.1 Model with State Dependence

From (6) we see that after marginalizing βi using the distribution in (3) that the latent zi can

be expressed as

zi = Xiβ + gi + ui (13)
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where the error vector is normal with variance matrix Vi = I + WiDW′
i. This implies that the

contribution of the ith cluster to the likelihood function (conditioned on gi),

Pr(yi|yi0, β,gi,D) =

∫

BiTi

· · ·

∫

Bi1

N (zi|Xiβ + gi,Vi)dzi , (14)

where Bit is the interval (0,∞) if yit = 1, or the interval (−∞, 0] if yit = 0, is in general difficult

to calculate.

However, estimation of the model in the Bayesian context is possible under the framework

of Albert and Chib (1993) by including the latent {zi} as part of the unknowns of the model.

To describe this approach we stack the observations in (6) across all subjects in the sample as

z = Xβ + Qg + Wb + ε, ε ∼ N (0, I) , (15)

after defining the vectors z = (z′1, ..., z
′
n)′ and b = (b′

1, ...,b
′
n)′, the matrix

X =







X1
...

Xn






,

the block-diagonal matrix

W =







W1

. . .

Wn






,

and where Q is an incidence matrix of dimension N ×m, with entries Qij = 1 if si = vj and 0

otherwise. In other words, the ith row of Q contains a 1 in the position where the observation

on s for that row matches the design point from the vector v, and all remaining elements are

zeros, so that s = Qv.

The MCMC algorithm described below is derived form (13) and (15), and is based on an effi-

cient blocking scheme proposed by Chib and Carlin (1999). They note that because β and {bi}

are correlated by construction, sampling them in two separate blocks from their full conditional

densities results in a slowly mixing and inefficient algorithm. In contrast, there is a significant

improvement in the efficiency of the Markov chain sampler when the fixed and random effects

are sampled in one block. This is done by using (13) to sample β from a conditional density that

does not depend on {bi}, followed by drawing {bi} from its full conditional density. We note

that with data augmentation, there are now two sets of latent variables in the sampler, {zi} and
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{bi}, and that the algorithm below subsumes an algorithm for the estimation of a simpler, fully

parametric version of the model.

Algorithm 1 Gaussian State Dependence Model: MCMC Implementation

1. Sample {zi}|y,D,g, β marginal of {bi} by drawing for i ≤ n , t ≤ Ti

zit ∼

{

T N (0,∞)(µit, vit) if yit = 1

T N (−∞,0](µit, vit) if yit = 0

where T N (a,b)(µit, vit) is a normal distribution truncated to the interval (a, b)

with mean µit = E(zit|zi\t, β,gi,Vi) and variance vit = V ar(zit|zi\t, β,gi,Vi), and

where Vi = I + WiDW′
i.

2. Sample β, {bi} |y,D, {zit},gi in one block by drawing

(a) β|y,D, {zit},g ∼ N (β̂,B), where β̂ = B(B−1
0 β0 +

∑n
i=1 X′

iV
−1
i (zi − gi)) and B =

(B−1
0 +

∑n
i=1 X′

iV
−1
i Xi)

−1 are the usual updates based on the complete data;

(b) bi|y,D, {zit}, β,g ∼ N (b̂i,Bi) with b̂i = BiW
′
i (zi − Xiβ − gi) and Bi = (D−1 +

W′
iWi)

−1 for i = 1, ..., n.

3. Sample D−1|{bi} ∼ W
{

r0 + n,
(

R−1
0 +

∑n
i=1 bib

′
i

)−1
}

.

4. Sample g|y, β, {bi} , τ
2, {zit} ∼ N (ĝ,G), where G =

(

K/τ2 + Q′Q
)−1

and where ĝ =

G
(

Kg0/τ
2 + Q′ (z − Xβ − Wb)

)

. Remark 1 below presents an important note on

the sampling in this step.

5. Sample τ2|g ∼ IG
(

ν0+m
2 , δ0+(g−g0)′K(g−g0)

2

)

.

Remark 1. In sampling g, one should note that Q′Q is a diagonal matrix whose jth diagonal

entry equals the number of values in s corresponding to the design point vj . Since K and Q′Q

are banded, G−1 is banded as well. Thus sampling of g need not include an inversion to obtain G

and ĝ . The mean ĝ can be found instead by solving G−1ĝ =
(

Kg0/τ
2 + Q′ (z − Xβ − Wb)

)

,

which is done in O(m) operations by back substitution. Also, let P′P = G−1, where P is the

Cholesky decomposition of G−1 and is also banded. To obtain a random draw from N (ĝ,G)
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efficiently, sample u ∼ N (0, I), and solve Px = u for x by back substitution. It follows that

x ∼ N (0,G). Adding the mean ĝ to x, one obtains a draw g ∼ N (ĝ,G).

We note that the MCMC approach to estimating τ2 in this hierarchical model overcomes

some of the difficulties associated with cross-validation and generalized cross-validation (Craven

and Wahba 1979). There are two main advantages of the MCMC approach. First, it can be

applied to both continuous and binary data (with the latter being the main focus of this paper),

while cross-validation techniques are mainly applicable to continuous data and are infeasible in

the current setup. Second, MCMC estimation accounts fully for parameter uncertainty, unlike

plug-in approaches, which do not account for the variability due to estimating the smoothing pa-

rameters. An important alternative to the above methods is the maximum integrated likelihood

approach to determining τ2 (Kohn et al. 1991), but it is also infeasible in our setting because of

the intractability of the likelihood function and the high-dimensional integration (over a space

of dimension equal to the sample size) that is required by that approach.

Critical to the feasibility of the estimation approach is the existence of efficient MCMC

algorithms that can quickly explore the posterior distribution. Algorithm 1 provides one such

estimation method for the model with state dependence. However, the presence of serially

correlated errors presents other challenges.

3.2 Model with Dependent Errors

Suppose now that the errors follow a zero-mean stationary pth order autoregressive, AR(p),

process

εit = ρ1εt,t−1 + ...+ ρpεi,t−p + vit , (16)

where vit is independent N (0, 1). The process in (16) can equivalently be expressed in terms of

a polynomial in the backshift operator L as ρ (L) εit = vit, where ρ (L) = 1 − ρ1L − ... − ρpL
p

and stationarity is maintained by requiring that all roots of ρ (L) lie outside the unit circle. We

clarify that, in contrast, stationarity was not an issue for the state dependence coefficients φ

because those multiply the binary lags and thus simply serve as intercept shifts.

Previous studies by Diggle and Hutchinson (1989), Altman (1990), and Smith et al. (1998),

have shown that when the errors are treated as independent when in fact they are not, the
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correlation in the errors can adversely affect the nonparametric estimate of the regression func-

tion. For example, when the covariate s is in temporal order, the unknown function g (s) can

be confounded with the autocorrelated error process as both are stochastic processes in time.

If the serial correlation in the errors is ignored, the estimate of g (s) can become too rough as

it attempts to mimic the errors; the undersmoothing can be visible even for mild serial correla-

tion. Smith et al. (1998) point out that even if the independent variable is not time, modeling

the autocorrelation in the errors gives more efficient nonparametric estimates, as it reduces the

effective error variance similarly to the case of parametric regression.

In our longitudinal data setup, for i = 1, ..., n and t = 1, ..., Ti, the latent data representation

of the model with AR(p) serial correlation is

zi = Xiβ + Wibi + gi + εi,

where yit = 1 {zit > 0}, the errors εi = (εi1, ..., εiTi
)′ follow the distribution εi ∼ N (0,Ωi),

and Ωi is the Ti × Ti Toeplitz matrix implied by the autoregressive process. For the general

AR(p) case, the matrix Ωi can be determined as follows. Let ϕj = E (εitεi,t−j) be the jth

autocovariance (satisfying ϕj = ϕ−j). It can easily be shown (cf Hamilton 1994, Section 3.4)

that the autocovariances follow the same pth-order difference equation as does the process itself,

i.e. ϕj = ρ1ϕj−1 + ... + ρpϕj−p. The first p values (ϕ0, ϕ1, ..., ϕp−1) are given by the first p

elements of the first column of the p2×p2 matrix [I − F ⊗ F]−1, where ⊗ denotes the Kronecker

product and F is the p× p matrix defined by

F ≡















ρ1 ρ2 · · · ρp−1 ρp

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0















.

Using the sequence of autocovariances ϕj obtained in this way, the matrix Ωi can be constructed

using Ωi [j, k] = ϕj−k. For example, in the AR(1) case, the jkth element of Ωi is given by

ρ|j−k|/
(

1 − ρ2
)

, i.e.

Ωi =
1

1 − ρ2













1 ρ · · · ρTi−1

ρ
. . .

...
...

. . . ρ
ρTi−1 · · · ρ 1













. (17)
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Stacking the observations for all n clusters, by analogy with (15), we have

z = Xβ + Qg + Wb + ε, ε ∼ N (0,Ω) , (18)

where Ω is a block diagonal matrix given by

Ω =







Ω1

. . .

Ωn






.

The fact that the errors are not orthogonal (and Ω is not diagonal) requires only minor adjust-

ments to the sampling of β, z, D, τ2, and b in Algorithm 1, but the sampling of g is problematic.

The difficulty is that, after accounting for the autocorrelated errors, Step 4 of Algorithm 1 will

involve the matrix G−1 =
(

K/τ2 + Q′Ω−1Q
)

which is not banded any longer (even though Ω−1

is banded). Hence, the computational shortcuts discussed in Remark 1 are inapplicable. Intu-

itively, bandedness fails because serial correlation introduces dependence between observations

that are neighbors on the basis of the ordering of the covariate s, whereas the function evalua-

tions g depend on neighbors that are determined according to the ordering in v, the vector of

unique and ordered values of s (with s = Qv).

Diggle and Hutchinson (1989) and Altman (1990) considered a special case that can still

result in O (N) estimation. There attention is restricted to univariate models for non-clustered

data where the independent variable is time. Then, because the elements in s are already

unique and ordered, we have v = s, or in other words Q = I. This implies that G−1 =

(

K/τ2 + Q′Ω−1Q
)

=
(

K/τ2 + Ω−1
)

is banded, and estimation can be done in O (N) operations

as outlined in Remark 1. Unfortunately, in panel data settings Q is unlikely to be an identity

matrix even when s is time, as repeating values in s will tend to emerge across clusters. The

general case when s is allowed to be any covariate (not necessarily time) is considered in Smith

et al. (1998) but their algorithm is O
(

N3
)

as it works with the nonbanded precision matrix

G−1. Thus, the applicability of that method is only limited to small data sets and is infeasible in

panel data settings where the sample size N can easily run into the (tens of) thousands. Finally,

we note that the method of orthogonalizing the errors by working with the transformed data

ρ (L) zit, ρ (L)xit, ρ (L) g (sit), and ρ (L)wit, (cf Harvey 1981, Chapter 6; Chib 1993) works well

in parametric models, but will not be a solution here because it is equivalent to premultiplying
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the matrices X, W, and Q, by the Cholesky decomposition of Ω−1 and this still leaves G−1

nonbanded.

Below we propose a different approach to orthogonalizing the errors that exploits the longi-

tudinal nature of the data. In particular, the idea is to decompose the errors into a correlated

and an orthogonal part, and to deal with the correlated part of the errors in much the same

way in which we deal with the random effects. Once the correlated part is given, the nonpara-

metric estimation of g can proceed as efficiently as before. To illustrate, decompose the matrix

Ωi = Ri +κI, where Ri is a symmetric positive definite matrix and κI is a diagonal matrix with

κ > 0 . Furthermore, let Ci be the Cholesky decomposition of Ri such that C′
iCi = Ri. Then

Ωi = C′
iCi + κI and the model can be rewritten as

zi = Xiβ + Wibi + gi + εi

= Xiβ + Wibi + gi + C′
iui + ξi, (19)

where ui ∼ N (0, I) and ξi ∼ N (0, κI) are mutually independent. Stacking the observations in

(19) for all n clusters, by analogy with (15) and (18), we have

z = Xβ + Qg + Wb + C′u + ξ, ξ ∼ N (0, κI) , (20)

where u = (u′
1, ...,u

′
n)′, and C is given by

C =







C1

. . .

Cn






.

Since the covariance matrix of ξ is diagonal, conditional on C′u we have obtained an orthogonal-

ization of the serially correlated errors that can be used to sample g efficiently. It now remains

to prove that a decomposition of Ωi into the sum of a symmetric positive definite matrix Ri

and a (positive definite) diagonal matrix κI exists, and to show how it can be found. Our proof

will be by construction, which is useful in providing intuition about applying the decomposition

in practice. The details are formalized below.

Theorem 1 A symmetric positive definite matrix Ωi can always be written as the sum of a

symmetric positive definite matrix Ri and a positive definite diagonal matrix κI.
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Proof. Our goal is to write Ωi = Ri + κI where we want Ri to be symmetric and positive

definite. The symmetry of Ri is immediate since Ωi is symmetric and κI is diagonal. It will then

be sufficient to show how to choose κ > 0 so that Ri is positive definite. For positive definiteness

we require x′Rix > 0 for any x 6= 0. Substituting for Ri, we need x′ (Ωi − κI)x > 0. Since Ωi

is symmetric positive definite, it can be written as Ωi = ViΛiV
′
i, where Λi is a diagonal matrix

containing its (strictly positive and real) eigenvalues {λij}, and Vi is an orthogonal matrix of

eigenvectors such that V′
iVi = ViV

′
i = I. Therefore, x′ (Ωi − κI)x = x′ (ViΛiV

′
i − κI)x =

x′ (ViΛiV
′
i − κIViV

′
i)x = x′Vi (Λi − κI)V′

ix and setting y = V′
ix, (y 6= 0 because Vi is

nonsingular) we have y′ (Λi − κI)y =
∑

j (λij − κ) y2
j , which is guaranteed to be positive as

long as min {λij} > κ > 0.

As the above decomposition is not unique, various values of κ will correspond to the same

model and the same dynamics. Therefore, in practice, the choice of κ will be based on conve-

nience and numerical stability. One simple choice that has performed very well in our simulations

is to set κ = min {λij} /2.

Our approach to estimating a model with serial correlation is based on Algorithm 1, the

discussion above, and the algorithms in Chib and Greenberg (1994) for sampling of the vector

of autoregressive coefficients ρ = (ρ1, ..., ρp)
′. The prior on ρ is specified as

ρ ∼ N (ρ0,P0) ISρ ,

where ISρ is an indicator of the set Sρ, defined as the set of ρ that satisfy stationarity. For the

sampling of ρ it will be useful to define the following quantities. Let eit = zit − x′
itβ − w′

itbi −

g (sit), ei = (ei,p+1, ..., ei,Ti
)′, e = (e′1, ..., e

′
n)′, and let E denote the (N − np) × p matrix whose

rows contain p lags of eit (i = 1, ..., Ti, t ≥ p+1), that is (ei,t−1, ..., ei,t−p). Finally, let the initial

p values of eit in each cluster be given by ei1 = (ei1, ..., eip)
′ and let Ωp be the p× p stationary

covariance matrix of the AR(p) error process, which is a function of ρ and is constructed in the

same way as the {Ωi}. Sampling for ρ uses the Metropolis-Hastings algorithm (Hastings (1970),

Tierney (1994), Chib and Greenberg (1995)).

Algorithm 2 Model with State Dependence and AR(p) Serial Correlation
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1. Sample {zi}|y,D,g, β, ρ marginal of {bi} by drawing for i ≤ n, t ≤ Ti

zit ∼

{

T N (0,∞)(µit, vit) if yit = 1

T N (−∞,0](µit, vit) if yit = 0

where T N (a,b)(µit, vit) is a normal distribution truncated to the interval (a, b)

with mean µit = E(zit|zi\t, β,gi,Vi) and variance vit = V ar(zit|zi\t, β,gi,Vi), with

Vi = Ωi + WiDW′
i, and Ωi determined by ρ as discussed above.

2. Sample β, {bi} , {ui} |y,D, {zit},gi, ρ in one block by drawing

(a) β|y,D, {zit},g, ρ ∼ N (β̂,B), where β̂ = B(B−1
0 β0+

∑n
i=1 X′

iV
−1
i (zi − gi)) and B =

(B−1
0 +

∑n
i=1 X′

iV
−1
i Xi)

−1;

(b) bi|y,D, {zit}, β,g, ρ ∼ N (b̂i,Bi) with b̂i = BiW
′
iΩ

−1
i (zi − Xiβ − gi) and Bi =

(D−1 + W′
iΩ

−1
i Wi)

−1 for i = 1, ..., n;

(c) ui|y, {zit}, {bi} , β,g, ρ ∼ N (ûi,Ui), where Ui =
(

I + CiR
−1
i2 C′

i

)−1
and ûi =

UiCiR
−1
i2 (zi − Xiβ − gi − Wibi) for i = 1, ..., n.

3. Sample D−1|{bi} ∼ Wp

{

r0 + n,
(

R−1
0 +

∑n
i=1 bib

′
i

)−1
}

.

4. Sample g|y, β, {bi} , τ
2, {zit} , {ui1} ∼ N (ĝ,G), where G =

(

K/τ2 + Q′R−1
2 Q

)−1
and

ĝ = G
(

Kg0/τ
2 + Q′R−1

2

(

z − Xβ − Wb − C′u
))

. AsG−1 is banded, estimation can

proceed efficiently as discussed in Remark 1.

5. Sample τ2|g ∼ IG
(

ν0+m
2 , δ0+(g−g0)′K(g−g0)

2

)

.

6. Sample ρ|y,g, β, {bi} , {zit} ∝ Ψ (ρ) × N (ρ̂,P) × ISρ where ρ̂ = P (P0ρ0 + E′e), P =

(P0 + E′E), and Ψ (ρ) = |Ωp|
−n/2 exp

(

−1
2

∑n
i=1 e′i1Ω

−1
p ei1

)

.

Sampling in Step 6 of Algorithm 2 is through a Metropolis-Hastings step where a proposal

draw ρ′ is generated from the density N (ρ̂,P) ISρ , and is subsequently accepted as the next

sample value with probability min {Ψ (ρ′) /Ψ (ρ) , 1}. If the candidate value ρ′ is rejected, the

current value ρ is repeated as the next value of the MCMC sample.4

4The approach for dealing with dependent errors is quite general and can be extended in a straightforward
fashion to other correlation structures. One such possibility is the exponentially autocorrelated error sequence
considered in Diggle and Hutchinson (1989); however, the method can also handle estimation of general correlation
matrices using the algorithms in Chib and Greenberg (1998).
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4 Average Covariate Effects

We now turn to the question of finding the effect of a change in a given covariate xj . This

is important for understanding the model, and in determining the impact of an intervention

on one or more of the covariates. Due to the nonlinearity induced by the link function, the

state dependence, the serial correlation, the unknown function and the subject-specific random

effects, the parameters in the model are difficult to interpret. In addition, the exact form of

the conditional probability of response is not available and therefore the effect of a change in a

given covariate on that probability is not straightforward to calculate. A change in the covariate

affects not only the contemporaneous response but also future values of the dependent variable.

Moreover, these effects depend on all other covariates and model parameters. Because of this

dependence, we calculate that effect marginalized over the remaining covariates and parameters.

To enhance understanding, suppose the canonical model for a new individual i is given by

zit = x′
itβ + w′

itbi + g(sit) + φ1yi,t−1 + φ2yi,t−2 + εit,

where x′
it = (x∗′

it ,w
′
itAi), β = (δ′, γ′)′, and we are interested in the effect of a particular x, say

x1, on contemporaneous and future yit. Splitting x′
it and β accordingly, we re-write the above

model as

zit = x1itβ1 + x′
2itβ2 + w′

itbi + g(sit) + φ1yi,t−1 + φ2yi,t−2 + εit.

The average covariate effect can then be analyzed from a predictive perspective applied to

this new individual i. Suppose that one thinks of setting x1i1 to the value x†1j1. For a pre-

dictive horizon of t = 1, 2, ..., Ti (where Ti is the smallest of the cluster sizes in the observed

data) one is now interested in the distribution of yi1, yi2, ..., yiTi
marginalized over {x2it}, bi,

and θ =
(

β, φ,g,D, τ2, ρ
)

given the current data y = (y1, ...,yn). A practical procedure is to

marginalize out the covariates as a Monte Carlo average using their empirical distribution, while

θ is integrated out with respect to the posterior distribution π (θ|y). Of course bi is independent

of y and hence can be integrated out of the joint distribution of {zi1, ..., ziTi
} analytically using

the distribution N(0,D), without recourse to Monte Carlo. Therefore, the goal is to obtain a
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sample of draws from the distribution

[zi1, ..., ziTi
|y,yi0, x

†
1i1] =

∫

[

zi1, ..., ziTi
|y,yi0, x

†
1i1, {x2it}, {wit} , {sit} , θ

]

π ({x2it} , {wit} , {sit})π (θ|y) d {xit} d {wit} d {sit} dθ.

In this particular example, there are four possible initial conditions for this subject which means

that there are four possible joint distributions for a given value of x†1j3.
5 Consider, for example,

the case where yi0 = (0, 0)′. A sample from the above predictive distribution can be obtained

by the method of composition applied in the following way. Find all the individuals N00 =

{i : yi0 = (0, 0)′}. Randomly draw one individual i∗ from this set and extract the sequence

of covariate values {x2i∗1, x2i∗2, ..., x2i∗Ti
}. Sample a value for θ from the posterior density and

sample {zi1, ..., ziTi
} jointly from

[

zi1, ..., ziTi
|y,yi0, x

†
1i1, {x2i∗t}, {wi∗t} , {si∗t} , θ

]

, constructing

the yit in the usual way. Repeat this for other individuals and other draws from the posterior

distribution to obtain the predictive probability mass function of (yi1, ..., yiTi
). Repeat this

analysis for a different value of x1i1, say x‡1i1, and compute the predictive mass function as

above. The difference in pointwise probabilities gives the effect of x1 as it is changed from x†1i1

to x‡1i1. Finally, repeat these steps for the other three possible initial conditions. The predictive

horizon can be extended further into the future, but at the cost of making potentially strong

assumptions about the covariates.

The above approach can similarly be applied to other elements of xit, as well as to elements

of wit. Quite importantly, it can be applied to determining the effect of the nonparametric

component g (s) because the error bands that are usually reported in the estimation of g (·)

may not provide sufficient information to make probabilistic statements about differences such

as g
(

s†
)

− g
(

s‡
)

, in cases when such statements could be meaningful. In addition, the above

approach can be done conditionally upon, instead of marginally of, certain variables (e.g. gender,

race) that might determine a subsample of interest.

In conclusion, we note that the entire approach in this section can be contrasted with the

usual textbook treatment, where in determining the effect of a given covariate, the remaining

covariates and parameters are held fixed at their mean values. The drawback of the latter

5Since we know the mixing distribution for the initial conditions, we can always produce the joint distribution
marginal of the initial conditions, but going in the opposite direction and decomposing the latter distribution into
its mixture components is not always possible.
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approach is that it ignores the uncertainty in the parameters and the covariates, and will produce

misleading results due to the non-linearity of the link function.

5 Model Comparison

A central issue in the analysis of statistical data is model formulation, since the appropriate

specification is rarely known and is subject to uncertainty. Among other considerations, the

uncertainty may be due to the problem of variable selection (i.e. the specific covariates and lags

to be included in the model), the functional specification (a parametric versus a semiparametric

model), or the distributional assumptions. In general, given the data y = (y1, ..., yn), interest

centers upon a collection of models {M1, ...,ML} representing competing hypotheses about the

data. Each model Ml is characterized by a model-specific parameter vector θl and sampling

density f(y|Ml, θl). Bayesian model selection proceeds by comparison of the models in {Ml}

through their posterior odds ratio, which for any two models Mi and Mj is written as

Pr(Mi|y)

Pr(Mj |y)
=

Pr(Mi)

Pr(Mj)
×
m(y|Mi)

m(y|Mj)
(21)

where

m(y|Ml) =

∫

f(y|Ml, θl)πl(θl|Ml)dθl (22)

is the marginal likelihood of Ml. The first fraction on the right hand side of (21) is known as

the prior odds and the second as the Bayes factor.

To date in the semiparametric function context, model comparisons have been based on

criteria such as the AIC and BIC (e.g. Shively et al. 1999, Wood et al. 2002, DiMatteo et al.

2001, Hansen and Kooperberg 2002), but their computation is infeasible in our setting because

the likelihood is intractable. Here we take up the question of calculating the marginal likelihood

of our semiparametric model.

The direct evaluation of the integral in (22) is generally infeasible. Chib (1995) provided a

method based on the recognition that the marginal likelihood can be re-expressed as

m(y|Ml) =
f(y|Ml, θl)π(θl|Ml)

π(θl|y,Ml)
. (23)

This is an identity that holds for any point θl. The calculation of the marginal likelihood is hence

reduced to finding an estimate of posterior ordinate π(θ∗l |y,Ml) at a single point θ∗l . Suppose
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that the parameter space is split into B conveniently specified blocks, so that θ = (θ1, ..., θB).

Let ψi = (θ1, ..., θi) denote the blocks up to i and ψi+1 = (θi+1, ..., θB) denote the blocks beyond

i, and suppress the model index for notational convenience. Then, by the law of total probability

we have

π (θ∗1, ..., θ
∗
B|y) =

B
∏

i=1

π
(

θ∗i |y, θ
∗
1, ..., θ

∗
i−1

)

=
B
∏

i=1

π
(

θ∗i |y, ψ
∗
i−1

)

, (24)

and each of the ordinates π(θ∗i |y, ψ
∗
i−1) can be estimated as

π
(

θ∗i |y, ψ
∗
i−1

)

≈ G−1
G

∑

g=1

π
(

θ∗i |y, ψ
∗
i−1, ψ

i+1,(g)
)

,

where ψi,(g) ∼ π
(

ψi|y, ψ∗
i−1

)

, g = 1, ..., G, come from a reduced run for 1 < i < B, and sampling

is only over ψi, with the blocks ψ∗
i−1 being held fixed (see Chib (1995)). The ordinate π (θ∗1|y)

for the first block of parameters θ1 is estimated with draws θ ∼ π (θ|y) from the main MCMC

run, while the ordinate π
(

θ∗B|y, ψ
∗
B−1

)

is available directly.

A version of the above method is also available when one or more of the full conditional

densities is not of a standard form and sampling requires the Metropolis-Hastings algorithm.

Chib and Jeliazkov (2001) use the local reversibility of the M-H Markov chain to show that

π(θ∗i |y, ψ
∗
i−1) =

E1

{

α
(

θi, θ
∗
i |y, ψ

∗
i−1, ψ

i+1
)

q
(

θi, θ
∗
i |y, ψ

∗
i−1, ψ

i+1
)}

E2

{

α
(

θ∗i , θi|y, ψ∗
i−1, ψ

i+1
)} , (25)

where E1 is the expectation with respect to conditional posterior π(ψi|y, ψ∗
i−1) and E2 that with

respect to the conditional product measure π(ψi+1|y, ψ∗
i )q(θ

∗
i , θi|y, ψ

∗
i−1, ψ

i+1), where q(θ, θ′|y)

denotes the candidate generating density of the M-H chain for moving from the current value θ

to a proposed value θ′, and

α(θi, θ
′
i|y, ψ

∗
i−1, ψ

i+1) = min

{

1,
f

(

y|θ′, ψ∗
i−1, ψ

i+1
)

π
(

θ′, ψ∗
i−1, ψ

i+1
)

q
(

θ′, θ|y, ψ∗
i−1, ψ

i+1
)

f
(

y|θ, ψ∗
i−1, ψ

i+1
)

π
(

θ, ψ∗
i−1, ψ

i+1
)

q
(

θ, θ′|y, ψ∗
i−1, ψ

i+1
)

}

denotes the M-H probability of move from θ to θ′. Each of these expectations can be computed

from the output of appropriate reduced runs.

We note that while it is true that the identity (23) can also be written as m(y|Ml) =

f(y|Ml, θl, zl)π(θl, zl|Ml)/π(θl, zl|y,Ml) when latent variables zl are present, that form of the

identity is not very useful, because the dimension of zl may be very large. We therefore generally

integrate out any such parameters before applying (23). Furthermore, we emphasize that the
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comparison of dynamic models with different numbers of lags should be based on an equal data

sample in order to be meaningful (this is indicated by conditioning on the same data y in (21)).

In our specific implementation, we decompose the posterior ordinate, marginalized over {zi}

and {bi}, as

π(D∗, τ2∗|y)π
(

β∗|y,D∗, τ2∗
)

π
(

ρ∗|y,D∗, τ2∗, β∗
)

π
(

g∗|y,D∗, τ2∗, β∗, ρ∗
)

and estimate the ordinate of g last because that tends to improve the efficiency of the ordinate

estimation. It may also be noted that the ordinate π
(

D∗, τ2∗|y
)

can be estimated jointly because

Algorithms 1 and 2 reveal that conditional on {bi} and g, the full conditional densities of D and

τ2 are independent. This observation saves the need to do an additional reduced run. Second,

in Algorithm 2 the proposal density q (ρ, ρ′|y, ·) = q (ρ′|y, ·) is a truncated normal density that

has an unknown normalizing constant except for the AR(1) case. Specifically, over the region of

stationarity Sρ we have q (ρ|y, ·) = h (ρ|y, ·) /
∫

sρ
h (ρ|y, ·) dρ, where h (ρ|y, ·) is an unrestricted

normal density for ρ. The problem is very similar to the one discussed in Chib and Jeliazkov

(2004a), and we adapt their solution here. Following that approach, it can be shown that the

reversibility condition used by Chib and Jeliazkov (2001) to obtain (25) can be re-written in

terms of q (ρ|y, ·) whose unknown normalizing constant on both sides will cancel, so that upon

integration, π
(

ρ∗|y,D∗, τ2∗, β∗
)

can be estimated by

π(ρ∗|y, ψ∗
i−1) =

E1

{

α
(

ρ, ρ∗|y, ψ∗
i−1, ψ

i+1
)

h
(

ρ∗|y, ψ∗
i−1, ψ

i+1
)}

E2

{

α
(

θ∗i , θi|y, ψ∗
i−1, ψ

i+1
)} ,

where ψ∗
i−1 =

(

D∗, τ2∗, β∗
)

, ψi+1 = (g, {zi} , {bi}), E1 is the expectation with respect to condi-

tional posterior π(ρ, ψi+1|y, ψ∗
i−1), and E2 that with respect to the conditional product measure

π(ψi+1|y, ψ∗
i )h(ρ|y, ψ

∗
i−1, ψ

i+1). It is also worth noting that because h (ρ′|y, ·) does not depend

on the current value for ρ in the sampler, estimation of the denominator quantity is done with

draws that are available from the same run in which the numerator is estimated. Further analy-

sis of the model comparison method is taken up in Chib and Jeliazkov (2004b), where marginal

likelihoods are estimated for different models, and the correctness of the estimates is verified for

cases in which answers are available by alternative estimation methods.

The implementation of (23), marginal of {zi} and {bi}, requires the likelihood ordinate

f
(

y|D∗, β∗, τ2∗,g∗, ρ∗
)

. To obtain this ordinate, we use the Geweke, Hajivassiliou, and Keane
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(GHK) method, which provides estimates of the likelihood contributions (14) at the values

(

D∗, β∗, τ2∗,g∗
)

. The method is based on writing Vi = LL′, where L is a lower triangular

Cholesky factorization, and making a change of variable from zi to εi where zi = Xiβ+gi +Lεi.

Then

Pr(yi|yi0, β
∗,g∗

i ,D
∗) =

∫

BiTi

· · ·

∫

Bi1

NTi
(zi|Xiβ

∗+g∗
i ,Vi)dzi

=

∫ d∗iTi

c∗
iTi

· · ·

∫ d∗i1

c∗i1

NTi
(u|0, I)du,

where

c∗it =
cit−x′

itβ
∗−g∗it−

∑t−1

k=1
ltkεik

ltt
, d∗it =

dit−x′
itβ

∗−g∗it−
∑t−1

k=1
ltkεik

ltt
,

and cit and dit denote the lower an upper limits of integration of Bit respectively. The integral

is then estimated by recursive Monte Carlo simulation, and the likelihood ordinate is obtained

as the product of the estimates of the individual likelihood contributions. In the example, we

use 10000 Monte Carlo iterations.

6 Simulation Study

The key aspect of our implementation is that it relies on a fully Bayesian, finite sample method-

ology for the analysis of the model in Section 2. This is enabled by our use of proper priors for

the parameters and the unknown function g (·), and may be contrasted with previous studies

(Silverman 1985, Wood and Kohn 1998, Hastie and Tibshirani 2000, Fahrmeir and Lang 2001),

where partially improper priors are used. In our simulation study we calculate mean squared

errors for the estimates of the unknown function, which are reported for several designs. The

posterior mean estimates E {g (v) |y}, are found from MCMC runs of length 5000 following

burn-ins of 1000 draws. A second goal for this study is to demonstrate the performance of the

MCMC estimation algorithm by reporting the autocorrelations and the inefficiency factors for

the sampled parameters under alternative model specifications and sample sizes. We find that

the overall performance of the MCMC algorithm improves with larger sample sizes (either with

larger number of clusters n or with larger cluster sizes {Ti}), and that the random effects are

simulated better when the increase in sample size comes as a result of increasing the cluster

sizes {Ti}.
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Figure 1: The three true functions in the simulation study.

Data is simulated from the model in (1) and (3), using 1, 2, and 3 lags, a single fixed effect

covariate X, and 1 or 2 individual effect covariates W (including a random intercept). X and

W contain independent standard normal random variables, and we use δ = 1, γ = 1, φ = 0.5∗1,

and D = 0.2∗ I. We generate panels with 250, 500, and 1000 clusters, and with 10 time periods,

using only the last 7 for estimation (Ti = 7, i = 1, ..., n), since our largest models contain 3

lags (the initial conditions are treated as given and are generated randomly). We consider three

functional specifications for the function g:

1. g (s) = sin (2πs), for s ∈ [0.6, 1.4];

2. g (s) = −1 + s+ 1.6s2 + sin (5s), for s ∈ [0, 1.1];

3. g (s) = −0.8 + s+ exp
{

−30 (s− 0.5)2
}

, for s ∈ [0, 1].

The three functions are plotted in Figure 1. Each of them is evaluated on a regular grid of

m = 51 points. We have chosen these functions to capture a range of possible specifications

– for example, the first function achieves its extrema in the interior of its domain, while the

second does so at the endpoints of the domain; the third function has a minimum at the end,

and a maximum in the interior, of its domain. In addition, the first function is symmetric, while

the other two are asymmetric. We gauge the performance of the method in fitting the above

functions using mean squared error

MSE =
1

m

m
∑

j=1

{ĝ (vj) − g (vj)}
2 . (26)
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Average Mean Squared Errors

Clusters Lags
Random
effects

g1 g2 g3

n = 250 J = 1 q = 1 0.01804 (0.01022) 0.01421 (0.00998) 0.01751 (0.01135)
q = 2 0.01039 (0.00537) 0.02463 (0.01231) 0.01694 (0.00712)

J = 2 q = 1 0.02102 (0.01331) 0.01406 (0.00711) 0.01717 (0.00659)
q = 2 0.02329 (0.02497) 0.03128 (0.03427) 0.03189 (0.02481)

J = 3 q = 1 0.02528 (0.03216) 0.02411 (0.02436) 0.02678 (0.01621)
q = 2 0.03063 (0.02459) 0.02080 (0.01756) 0.02232 (0.02274)

n = 500 J = 1 q = 1 0.00609 (0.00259) 0.00591 (0.00414) 0.00755 (0.00394)
q = 2 0.00914 (0.00574) 0.00815 (0.00361) 0.01232 (0.05837)

J = 2 q = 1 0.00816 (0.00521) 0.00755 (0.00393) 0.01225 (0.00623)
q = 2 0.00902 (0.00653) 0.00890 (0.00576) 0.00885 (0.00930)

J = 3 q = 1 0.01427 (0.00780) 0.01590 (0.00978) 0.01913 (0.00717)
q = 2 0.01461 (0.01038) 0.01716 (0.01384) 0.01896 (0.02248)

n = 1000 J = 1 q = 1 0.00332 (0.00194) 0.00627 (0.00432) 0.00404 (0.00167)
q = 2 0.00573 (0.00326) 0.00482 (0.00241) 0.00566 (0.00317)

J = 2 q = 1 0.00324 (0.00171) 0.00387 (0.00175) 0.00562 (0.00317)
q = 2 0.00683 (0.00677) 0.00634 (0.00226) 0.00662 (0.00529)

J = 3 q = 1 0.00727 (0.00501) 0.00622 (0.00302) 0.00551 (0.00238)
q = 2 0.00838 (0.00418) 0.00943 (0.00761) 0.01096 (0.00776)

Table 1: Average mean squared errors based on 10 samples, with estimated standard errors in
parentheses.

The average MSE, together with the standard errors based on 10 data samples, is reported in

Table 1 for various specifications. It is important to keep in mind that the goal of Table 1 is

not to illustrate the best possible fit for every possible situation, because that fit will depend on

the assumed priors and the specific data sample. The goal of Table 1 is rather to illustrate the

relative performance of the method under alternative specifications and also to show that given

the assumed priors, as the sample size grows the function will be estimated arbitrarily well.

In all cases, we have used comparable mildly informative priors, amongst which of particular

importance is the prior on τ2, which determines the appropriate degree of smoothness (more on

this below).

From Table 1 we see that as the sample size grows, in all cases the functions are estimated

more and more precisely, as expected. Also, in line with conventional wisdom, the general trend

seems to be that fitting models with fewer parameters for a given sample size results in lower

MSE estimates. We clarify that under this setup, increasing the number of lags J affects the
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simulation study in two ways: first, it leads to increasing the number of parameters in the model,

and second, it affects the proportion of ones among the responses (since all elements in φ are

positive). It is well known that the degree of asymmetry in the proportion of the responses

affects the estimation precision. For our one-lag models, the proportion of ones is between 0.62

and 0.67 across the three functional specifications, for the two-lag models that proportion is

between 0.67 and 0.72, and for the three lag models, it is between 0.71 and 0.76. As Table 1

shows, however, the method recovers the true functions well, despite this asymmetry. As an

illustration of the technique, in Figure 2 we show three particular nonparametric function fits

for n = 500, J = 2, and q = 1.
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Figure 2: Simulation Study. Three examples of estimated functions (solid lines), true functions
(dotted lines), and 95% confidence bands (dashed lines).

Considering the model as a whole, it should be apparent that we have a latent variable model

with three important variance structures, two of which involve parameters to be estimated (τ2

and D) and the other is fixed for identification purposes (the error distribution has variance 1 in

the probit case). Because of this, it is important to be aware that the relative informativeness or

noninformativeness of the priors for these variances should be viewed in the context of the other

variance priors, and not in isolation. The usual motivation for considering this interdependence

is that the variance of the errors and the variance τ2 of the Markov process prior determine the

trade-off between a good fit and a smooth function g (·) (with this trade-off being the focal point

of the penalized likelihood approach to nonparametric regression). Similarly, the variance of the

errors and the variance of the random effects D determine a balance between intra- and inter-
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cluster variation. While in large samples the effects of the assumed priors on the parameter

estimates is small (vanishing asymptotically), in small samples informative priors do matter.

Figure 3 illustrates this point by using two somewhat exaggeratedly different informative priors

on τ2. In one case the prior on τ2 is such that E
(

τ2
)

= 0.5 and SD
(

τ2
)

= 0.1; in the second

case E
(

τ2
)

= 0.001 and SD
(

τ2
)

= 0.001. The figure illustrates that the first prior leads to a

function which is more wiggly as it curves to interpolate the data more closely, while the second

prior leads to oversmoothing. When the sample size is increased from n = 250 to n = 1000, the

difference in the function estimates becomes much smaller, but the different degree of smoothness

is clearly visible in the graphs.
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Figure 3: Effect of τ2 on the estimates of g (solid lines) for two sample sizes: n = 250 in the first
column, and n = 1000 in the second. Since τ2 is large in the first row, the estimated function is
less smooth; a small τ2 in the second row leads to oversmoothing. The confidence bands (dashed
lines) are tighter in the second column because of the larger sample size.

An example of the performance of the MCMC sampler for the problem with n = 500 (with

Ti = 7) is illustrated in Figure 4, which shows an example of histograms and kernel-smoothed

marginal posterior densities for the parameters together with the corresponding autocorrelations

from the MCMC sampler. The linear effects, together with τ2 appear to be estimated well and
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Figure 4: Posterior samples and autocorrelations for the parameters of a semiparametric model
with one fixed effect, one random effect, and one lag (Ti = 7, i = 1, ..., n).

the sample is characterized by low autocorrelations. While it can be seen that D is estimated

well, its higher autocorrelation indicates that its mixing is slower than that of the remaining

parameters, and because of this longer Markov chain runs may be needed in order to describe

the marginal posterior density of D more accurately. The slower mixing occurs because D

is a parameter at the second level of the modeling hierarchy and depends on the data only

indirectly through {bi} (i.e. given {bi}, D does not depend on {zi} and y). Since {bi} are

not well identified in smaller clusters, when only a few observations are available to identify

the cluster-specific effects, and because learning about D occurs from the inter-cluster variation

of {bi}, D also suffers from weak identification when cluster sizes are small. To measure the

efficiency of the MCMC parameter sampling scheme we use the measures [1 + 2
∑∞

k=1 ρk(l)],

where ρk(l) is the sample autocorrelation at lag l for the kth parameter in the sampling with

the summation truncated according to (say) the Parzen window. The latter quantity is called

the inefficiency factor or the autocorrelation time and may be interpreted as the ratio of the

numerical variance of the posterior mean from the MCMC chain to the variance of the posterior

mean from hypothetical independent draws. Table 2 shows the inefficiency factors corresponding

to the parameters for the same model as above, but now with different cluster sizes (7, 12, and

17 observations per cluster). In this setup the larger cluster size serves to identify {bi} better,

allowing for inter-cluster variation to be captured more precisely. In line with the arguments
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Inefficiency Factors
Parameter Ti = 7 Ti = 12 Ti = 17

δ 13.683 10.183 12.553
γ 9.617 6.155 7.247
φ 12.111 8.310 9.031
D 24.002 13.276 9.413
τ2 10.654 5.260 8.740

Table 2: Examples of estimated inefficiency factors (autocorrelation times) for the parameters
of the model with one lag, one random effect, and one fixed effect for n = 500.

above, Table 2 shows that the inefficiency factor for D drops considerably (the other inefficiency

factors stay within a similar range). The improvement in the sampling of D is also easily seen

from a comparison of Figures 4 and 5, with the latter summarizing the MCMC output used for

the third column of Table 2, when Ti = 17.
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Figure 5: Posterior samples and autocorrelations for the parameters of a semiparametric model
with one fixed effect, one random effect, and one lag (Ti = 17, i = 1, ..., n).

Similarly to the cases discussed in Table 2, we present results for the inefficiency factors

for a model with two lags and two random effects in Table 3. Since now not one, but two

random effects are estimated from the limited observations in each cluster, the elements of D

are sampled with somewhat higher inefficiency factors. Here again, however, Table 3 shows that

as the cluster sizes increase, resulting in better identification of {bi}, the inefficiency factors for

the elements of the heterogeneity matrix D drop noticeably.

Finally, in Table 4, we report results from experiments involving a model with serially corre-
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Inefficiency Factors
n=250 n=500 n=1000

Param Ti = 7 Ti = 12 Ti = 17 Ti = 7 Ti = 12 Ti = 17 Ti = 7 Ti = 12 Ti = 17

δ 21.156 18.093 18.882 19.885 16.072 14.721 20.788 22.462 20.650
γ1 12.192 12.195 11.511 14.725 12.995 12.815 12.164 13.567 12.336
γ2 11.399 8.483 9.607 15.638 8.836 7.325 14.640 10.073 9.564
γ3 9.059 10.364 8.414 11.750 10.477 9.191 12.592 12.903 8.436
φ1 9.288 9.121 7.996 7.016 10.962 11.065 14.363 10.229 10.806
φ2 8.385 7.599 10.140 7.692 7.521 8.480 9.147 11.141 10.009
D11 27.008 22.457 18.865 31.560 23.884 18.722 34.094 25.949 18.075
D12 29.728 23.157 18.156 29.884 25.814 14.908 26.313 20.249 18.379
D22 26.243 26.372 17.627 34.718 27.870 18.092 34.556 24.668 21.799
τ2 10.580 12.453 10.166 14.742 9.474 7.802 8.015 6.051 6.015

Table 3: Examples of estimated inefficiency factors (autocorrelation times) for the parameters
of the model with two lags, two random effects and one fixed effect.

lated errors. Table 4 contains the inefficiency factors for three cluster sizes and two values of ρ.

The parameters ρ and D are sampled well in all cases, but it is interesting to see that when ρ is

positive, both ρ and D have higher inefficiency factors than otherwise. This is because both are

estimated from the covariance of the errors, and decomposing that matrix into an equicorrelated

part (with positive elements implied by the random intercept) and a Toeplitz part (implied by

the AR(1) part, which also has positive elements when ρ > 0) is difficult in small samples. As

the cluster sizes increase, D is identified better, so both ρ and D are estimated better. This does

not appear to be a problem when ρ < 0, because then the two correlation structures implied

by ρ and D are quite different. For the samplers and values of ρ being considered, the M-H

acceptance rate in the sampling of ρ was in the range of (0.87, 0.98).

Inefficiency Factors (ρ = −0.5) Inefficiency Factors (ρ = 0.5)
Parameter Ti = 7 Ti = 12 Ti = 17 Ti = 7 Ti = 12 Ti = 17

δ 19.059 17.430 20.190 20.748 14.064 17.715
γ 9.340 7.299 7.864 11.421 11.303 12.046
φ 23.047 25.626 18.235 17.001 20.239 20.108
D 21.475 16.214 12.751 39.468 28.021 15.191
τ2 9.680 7.076 6.010 11.837 7.965 7.970
ρ 20.501 21.345 20.276 32.398 27.122 26.447

Table 4: Examples of estimated inefficiency factors (autocorrelation times) for the parameters
of the model with one lag, one random effect, one fixed effect, and AR(1) serial correlation for
n = 500.

To summarize, the results suggest that the MCMC algorithm performs well, and that the
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estimation method recovers the parameters and functions used to generate the data. The perfor-

mance of the method in recovering the nonparametric function g (·) and the model parameters

improves with the sample size, when the model is identified better. Most noticeably, the sampling

of D benefits strongly from the availability of larger cluster sizes.

7 Intertemporal Labor Force Participation Of Married Women

In this section, we consider an application to the annual labor force participation decisions of

1545 married women in the age range of 17-66. The data set, based on Hyslop (1999), contains

a panel of women’s working status indicators (1 = working during the year, 0 = not working)

over a 7 year period (1979-1985), together with a set of 9 covariates, which are presented in

Table 5. The sample consists of continuously married couples where the husband is a labor

force participant (reporting both positive earnings and hours worked) in each of the sample

years. The data set is obtained from the Panel Study of Income Dynamics (PSID), which is

available on the web at http://www.isr.umich.edu/src/psid/ and contains information on educa-

tion, employment, income, family composition, and many other variables of economic interest.

Similar data have been analyzed by Chib and Greenberg (1998), who estimated multivariate

probit models using MCMC methods, by Avery, Hansen, and Hotz (1983) using the method of

moments, and by Hyslop (1999) who fits dynamic probit models by maximum simulated likeli-

hood estimation, and compares the estimates to those from linear probability models and static

probit models. Covariates similar to those in Table 5 are also common in empirical models of

the intensive (hours), in addition to the extensive (participation), margin of female labor supply

(e.g. Nakamura and Nakamura (1994), Shaw (1994), Heckman (1993), Mroz (1987)).

A key feature of our application is that the effect of age on the conditional probability of

working is modeled nonparametrically. Nonlinearities arise due to changes in trade-offs and

tastes for work over a woman’s life cycle, age-related changes in health (both her own, and of

her close relatives), the fact that age is indicative of the expected timing of events (graduation

from school or college, marriage, planning for children, etc.), and because a woman’s age may be

revealing of her social values and education type (cohort effect), her experience as a homemaker

and in the market (productivity effect), and the types of jobs available to her. Previous studies
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Variable Explanation Mean SD

WORK wife’s labor force status (1=working, 0=not working) 0.7097 0.4539
INT an intercept term (a column of ones)
AGE the woman’s age in years 36.0262 9.7737
RACE 1 if black, 0 otherwise 0.1974 0.3981
EDU attained education (in years) at time of survey 12.4858 2.1105
CH2 number of children aged 0-2 in that year 0.2655 0.4981
CH5 number of children aged 3-5 in that year 0.3120 0.5329
CH13 number of children aged 6-13 in that year 0.6763 0.8851
CH17 number of children aged 14-17 in that year 0.2950 0.6064
INC total annual labor income of head of household 31.7931 22.6417

Table 5: Variables in the women’s labor force participation application. The dependent variable
is the woman’s labor force status, and the remaining variables are explanatory variables. The
summary statistics are based on the entire sample of observations. INC (in thousands of dollars)
is measured as nominal earnings adjusted by the consumer price index (base year = 1987).

have attempted to capture some of this nonlinearity by including polynomials in age (Hyslop

(1999)), or by considering separate age groups (e.g. Shaw (1994), Blau (1998), Nakamura and

Nakamura (1994)). It is well known that the results will be contingent upon the particular choice

of age groups, and that parametric models offer only limited flexibility and affect the shape of

the regression function globally, rather than locally – for these reasons nonparametric modeling

may be preferable. We note, however, that even if one prefers to use parametric models for

the ultimate purpose of explanation or prediction, a semiparametric model offers an important

exploratory step toward final model determination.

A second important aspect of the current application is that state dependence is incorporated

through two lags of the dependent variable. The second lag leads to improved model performance

and a higher marginal likelihood than for a model with only one lag. This finding is quite sensible

in light of the existence of multiple sources of state dependence, whose effects cannot a priori be

restricted to single-lag specifications. Such sources of state dependence include human capital

accumulation (e.g. Heckman (1981)), search costs of finding a new job (e.g. Hyslop (1999),

Eckstein and Wolpin (1990)), costs of solving additional practical problems (child care needs,

transportation, relocation of housework, resolution of scheduling conflicts) which would have

already been solved by employed women (Nakamura and Nakamura (1994)), and intertemporal

nonseparability of preferences for leisure (Hotz, Kydland, and Sedlacek (1988)). From an applied

perspective, this implies that reliance upon single-lag models without allowing for more elaborate
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forms of state dependence may have adverse consequences, as controlling for dynamic factors

is crucial for eliciting other substantive issues of interest, such as heterogeneity and covariate

effects.

Third, a principal finding of this analysis is that in addition to variation in the intercept,

other important sources of heterogeneity emerge in considering the impact of small children on

female labor supply. The issue was studied by Angrist and Evans (1998), who were interested

in the effect that a woman’s schooling or her husband’s earnings may have on the labor sup-

ply consequences of childbearing. Interest in this problem stems from a number of theoretical

models of home production and the value of a housewife’s time, which suggest a dependence

on her education and her or her husband’s income (Gronau (1973a, 1973b, 1977), Angrist and

Evans (1996)). As an empirical issue, Angrist and Evans (1998, p. 469) argue that “...because

mothers’ education and husbands’ wages are correlated, it is not clear whether a set of esti-

mates that condition on husbands’ earnings and a set of estimates that condition on mothers’

education are capturing distinct phenomena” (in our sample, Corr(EDU, INC) = 0.30 and

Corr(EDU, ln(INC)) = 0.32). We address this and other issues of model determination further

below, and in anticipation of those results we present our baseline specification, where, in addi-

tion to a random intercept, the effects of the covariates CH2 and CH5 are specified as random

and are allowed to depend on husbands’ earnings and the initial conditions.

Summarizing the above discussion, our main model (M1) is given by:

Pr(yit = 1|θ, βi) = 1
{

x∗′
itδ + w′

itβi + g (sit) + φ1yi,t−1 + φ2yi,t−2 + εit > 0
}

,

βi = Aiγ + bi, bi ∼ N3(0,D),

where yit = WORKit, θ = (δ,g, φ1, φ2, γ,D), x∗′
it = (RACE,EDUit, ln (INCit)), sit = AGEit,

w′
it = (1, CH2it, CH5it), and

Ai =





ȳi0

1 ȳi0 ln(INCi)

1 ȳi0 ln(INCi)



 .

Because of its features, model M1 can be contrasted with previous studies of female labor

supply which largely rely on parametric models with at most one lag, under the assumption

that variation in the intercept is the only source of heterogeneity.
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Parameter Covariate Mean SD Median Lower Upper Ineff

δ RACE 0.170 0.080 0.169 0.014 0.329 7.012
EDU 0.087 0.015 0.086 0.057 0.117 23.189

ln (INC) -0.190 0.048 -0.189 -0.286 -0.098 16.484
γ ȳi0 1.371 0.173 1.365 1.047 1.724 27.802

CH2 0.142 0.312 0.144 -0.479 0.747 5.414
(CH2) (ȳi0) -0.245 0.161 -0.248 -0.556 0.077 19.356

(CH2)
(

ln (INCi)
)

-0.135 0.093 -0.135 -0.318 0.046 6.230

CH5 0.868 0.273 0.867 0.339 1.416 8.358
(CH5) (ȳi0) -0.351 0.127 -0.350 -0.606 -0.103 14.530

(CH5)
(

ln (INCi)
)

-0.221 0.081 -0.221 -0.380 -0.063 8.139

φ yi,t−1 1.213 0.071 1.213 1.072 1.348 15.863
yi,t−2 0.445 0.071 0.445 0.308 0.581 11.470

vech (D) 0.540 0.129 0.528 0.319 0.828 38.481
-0.043 0.096 -0.043 -0.243 0.133 45.999
0.137 0.071 0.119 0.046 0.319 45.617
-0.151 0.085 -0.138 -0.347 -0.019 43.454
0.017 0.049 0.011 -0.066 0.136 45.551
0.158 0.086 0.135 0.047 0.366 46.355

τ2 0.017 0.006 0.016 0.009 0.030 5.473

Table 6: Parameter estimates for model M1. The table also reports 95% confidence intervals
and inefficiency factors from 15000 MCMC iterations.

The parameter estimates for M1 are presented in Table 6. Interpretation of the estimates

in Table 6 is complicated by the nonlinearity of the problem and the interactions between the

variables. For example, the income and child variables are important determinants of female

labor supply but they enter the model in a way that makes it difficult to disentangle and evaluate

their effects. For this reason, we present the average effects for certain changes in these covariates

in Figure 6. More specifically, the figure presents the average effects of three hypothetical

scenarios: first, doubling of the husband’s earnings, second, the effect of an additional birth

in period 1 (i.e. having an additional child aged 0-2 in periods 1-3, who grows and changes

categories to become a child aged 3-5 in periods 4 and 5), and third, the effect of an additional

child aged 3-5 in periods 1-3. The figure presents results for sets of individuals distinguished

by their initial conditions, namely Nmn =
{

i : yi0 = (m,n)′
}

, as well as overall results for the

sample.6

6The results for the overall effect are produced by averaging the results for the subsets {Nmn} with respect to
their proportion relative to the entire data set, using the observed occurrences: # {N00} = 337, # {N01} = 98,
# {N10} = 127, # {N11} = 983.
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Figure 6: The average effect of doubling a husband’s permanent income (first row), having an
additional child aged 0-2 in periods 1-3, and aged 3-5 in periods 4 and 5 (second row), or an
additional child aged 3-5 in periods 1-3 (third row).

From Table 6 and Figure 6, we see that conditional on the covariates, black women appear

more likely to work, and that, ceteris paribus, women who work are more likely to be better

educated, or have husbands with low earnings (although quite large changes in earnings are

necessary to produce economically significant changes in participation). Quite importantly, the

results in Table 6 indicate strong state dependence on the first two lags, so that women who

have worked in the previous two years are much more likely to work this year and vice versa.

Figure 6 shows that there is a negative overall effect of pre-school children on labor supply,

which is noticeably stronger for children aged 0-2 than for children aged 3-5. The results also

show that after controlling for state dependence and the remaining covariates, the impact of

husband’s earnings on the effect of children on a woman’s participation is negative, agreeing

with theoretical predictions. This finding is even more significant when contrasted with the

result in Angrist and Evans (1998), who found that their estimates contradicted the theoretical

prediction that the labor supply of more educated women responds more to the presence of

children. There are many differences between the two models and the estimation techniques,

and one such difference is that in M1 husband’s earnings, rather than wife’s education, are
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Figure 7: The effect of age on the probability of working.

allowed to be correlated with the child effects – our conclusions did not change when we fit a

model where education was correlated with the child effects, however, the marginal likelihood

for that model was lower than that of M1 as discussed at the end of this section.

There is strong correlation between the initial conditions and the random effects in this

model. In particular, the positive correlation between the random intercept and the initial con-

ditions and the negative correlation between ȳi0 and the effects of CH2 and CH5 is in agreement

with a human capital theory, and also with the fact that the initial observations are indicative

of a woman’s tastes. More precisely, these correlations, as captured by the parameters γ, are

consistent with the explanation that in equilibrium, the marginal returns of an hour spent at

home are higher for higher productivity women, and those will tend to be ones who have worked

in the initial period. Increasing the number of children will then increase the time spent at

home and reduce the probability of working, but more so for higher productivity women in the

presence of increasing returns to scale in child-rearing (Angrist and Evans (1996, 1998)).

The estimate of the nonparametric function g (AGE) is shown in Figure 7. From Figure 7

we see that the impact of age is characterized by interesting nonlinearities in women’s 20’s and

30’s, and that a woman’s propensity to participate in the labor force drops off as she approaches

retirement age. In particular, we see that the probability of employment grows quickly in the

early twenties, as women graduate from college and begin work, then decreases somewhat in

the late twenties and early thirties only to increase again in the mid-thirties and early forties.
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The drop-off in the function after the mid-forties is consistent with a cohort effect (women who

were over 40 in the early 1980’s were raised and educated at a time when the expectation was

that they will be housewives), as well as the effects of age-related changes in health (both her

own, and of her older relatives). The peculiar behavior of the function around age 30 represents

an interesting question for future research, for which we do not have an explanation at present.

In several alternative models, including a random intercept model, the dip in the probability of

working around age 31 was somewhat more pronounced, making an approximation by low-order

polynomials in age less revealing of the impact of age. Overall, the features of the regression

relationship presented in Figure 7 were quite stable across several alternative semiparametric

specifications, including single lag models or models with different covariates, which mostly

resulted in vertical shifts of g (AGE). The log marginal likelihood of M1, the baseline model

discussed above, was estimated to be −2563.826.

A number of alternative model specifications were considered. Issues such as variable se-

lection, lag determination, and correlation between the unobserved effects and covariates, are

handled as model selection problems by computing the marginal likelihoods and Bayes factors of

competing models. In the interest of clarity and completeness, the more important model deter-

mination issues are revisited in Table 7. We begin with the problem of variable selection. Many

previous articles considered INC as a covariate, but because of the strong degree of skewness

of the income distribution, INC had little explanatory power. Angrist and Evans (1998), con-

sidered using ln (INC) rather than INC, and using this covariate transformation here, perhaps

not surprisingly, resulted in decisively higher marginal likelihoods (all differences were over 20

on the natural log scale) across the alternatives we considered. In addition, in agreement with

the general view in labor economics, the results from this model support the proposition that a

woman’s decision to work is affected mainly by pre-school children, and not by older children.

More specifically, models including CH13 and CH17 (either as fixed or random effects) had lower

marginal likelihoods than models without these covariates – see models M2 and M3 in Table 7.

Turning attention to the heterogeneity in the individual specific effects, we see from Table

7 that model M4, where the conditional means of the child status effects are allowed to be

correlated with EDUi instead of with ln(INCi), does not perform as well as M1 (using both
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Model Fixed Eff. Random Eff. Non-zero elements in Ai ln(Marg. Lik.)

Baseline model:

M1 x∗
it, yi,t−1, yi,t−2 wit (ȳi0; 1, ȳi0, ln (INCi); −2563.826

1, ȳi0, ln (INCi))
Models with CH13 and CH17:
M2 x∗

it, yi,t−1, yi,t−2, wit Ai as in M1 −2574.326
CH13it, CH17it

M3 x∗
it, yi,t−1, yi,t−2 wit, CH13it, CH17it Ai as in M1 −2598.028

Models with alternative heterogeneity assumptions:

M4 x∗
it, yi,t−1, yi,t−2 wit (ȳi0; 1, ȳi0, EDUi; −2572.240

1, ȳi0, EDUi)
M5 x∗

it, yi,t−1, yi,t−2 wit (ȳi0; 1, ȳi0; 1, ȳi0) −2568.647

M6 x∗
it, yi,t−1, yi,t−2 wit (ȳi0, ln (INCi); −2589.771

1, ȳi0, ln (INCi);

1, ȳi0, ln (INCi))
M7 x∗

it, yi,t−1, yi,t−2 1 (ȳi0) −2580.102
Parametric models:

M8 x∗
it, yi,t−1, yi,t−2, wit (1, ȳi0; 1, ȳi0, ln (INCi); −2581.156

AGEit 1, ȳi0, ln (INCi))

M9 x∗
it, yi,t−1, yi,t−2, wit (1, ȳi0; 1, ȳi0, ln (INCi); −2574.563

AGEit, AGE
2
it 1, ȳi0, ln (INCi))

Single-lag model:
M10 x∗

it, yi,t−1 wit Ai as in M1 −2610.709
Model with dependent errors:
M11 x∗

it, yi,t−1, yi,t−2 wit Ai as in M1 −2579.551

Table 7: Alternative models in the women’s labor force participation application. In this table,
we use x∗

it = (RACEit, EDUit, ln (INCit))
′ and wit = (1, CH2it, CH5it)

′ and except for the
parametric models, the effect of age is modeled nonparametrically. Only the non-zero elements
of Ai are presented, with commas separating the columns in a given row, and semi-colons
separating rows. The log marginal likelihoods are estimated from MCMC runs of length 15000.

EDUi and ln(INCi) in Ai performed even worse, and is not reported). Husbands’ earnings

appear to have richer information content than wives’ education in this particular application,

despite the fact that the two are closely correlated. Two additional competing specifications are

presented in M5 and M6. Model M5 allows the individual effects to be correlated with the

initial conditions but not with any covariates, while M6 allows all random effects, including the

intercept, to depend on ln(INCi) and the initial conditions. Although one of the specifications

is more parsimonious, while the other is less parsimonious than M1, both have lower marginal

likelihoods than M1, illustrating that Bayes factors support the inclusion of relevant covariates

but penalize overparameterization. Most importantly, the table shows that a “traditional”

specification with a single unobserved effect (a random intercept) did worse than M1 by a large
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Figure 8: Parametric estimates, resulting from a linear and a quadratic specification in age,
versus the nonparametric estimate of the function g(AGE) reported previously.

margin as can be seen from M7.

The index function of model M8 is linear in age, but the model is otherwise similar to M1

with 2 lags and 3 random effects (observe that Ai is not restricted for identification purposes

since now g(·) is not general). That model produced a negative coefficient estimate for age

of −0.0105 with 95% credibility region given by (−0.018,−0.003). The estimate from this

parametric model can be deceiving, because it overlooks the drastic increase in the probability

of working in women’s early twenties. A more flexible parametric model is M9, which uses

a quadratic in age. The estimates from the two parametric models are plotted against the

nonparametric estimate from M1 in Figure 8. From the figure we see that the estimates are

generally very close, but that even the more complex parametric model still underestimates the

strong increase in g(AGE) in women’s early twenties.

A final important point relates to the state dependence in the model. Models with a single lag

resulted in marginal likelihoods which were lower by over 30 on the natural log scale than models

with two lags – the single-lag version (M10) of our baseline model had a marginal likelihood

which was lower than that of M1 by about 47 on the natural log scale. In this example,

higher order state dependence turns out to be extremely significant in another way as well. One

peculiarity of Hyslop’s (1999) results is the presence of statistically significant negative serial

correlation in the errors. Hyslop (p. 1288) states that “[a] suitable interpretation for this is not

obvious. One possibility, beyond the scope of this paper, is that the form of state dependence is
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misspecified, and that the AR( 1) error component is acting as a fitting parameter in the model.

For example, individuals’ human capital, which affects their wage offers and depends on their past

participation decisions, will imply a more general form of state dependence.” Our results from a

model with AR(1) serially correlated errors (M11) confirm Hyslop’s conjectures entirely. Adding

the second lag in the specification (as well as accounting more fully for additional sources of

heterogeneity and nonlinearity) leave no serial correlation in the errors. In the sampling of model

M11 the value of ρ was estimated to be −0.047 with a 95% confidence interval (−0.224, 0.113).

As indicated in Table 7, the marginal likelihood of −2579.551 is significantly lower than that of

our baseline model. We take the results from the analysis as a strong warning urging us to be

careful when we too quickly accept the ability of single-lag models to properly account for state

dependence.

The methodology described in the paper has allowed for the analysis of features of this

application such as (i) nonlinearity in the conditional probability of working, (ii) multi-lag state

dependence, (iii) serial correlation in the errors, (iv) heterogeneity in the effect of multiple

covariates, and (v) correlation between the random effects and the covariates. The techniques

developed in Sections 2-4 provide a flexible and conceptually straightforward semiparametric

framework for analyzing the above complexities, while guarding against overparameterization

by using marginal likelihoods to judge the evidence in the data in favor of particular modeling

decisions regarding variable and model selection. The approach is also useful in providing

interpretable results in terms of the average covariate effects. The broader implications emerging

from our analysis are that the complexity of real-world panel data applications should warrant

an extended analysis of the above concerns and that issues of model determination should not

be underestimated. Our application shows that more involved modeling can be used to uncover

interesting insights and improve the fit, but also that model complexity does not necessarily

guarantee better performance – simpler models with fewer covariates or simpler structures often

outperform more complex counterparts.
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8 Concluding Remarks

This paper has provided a hierarchical Bayes framework for analyzing dynamic binary panel

data. Key advantages of the modeling approach that distinguish it from previous work are the

semiparametric modeling of the conditional response probability, and the ability to accommodate

general state dependence, serial correlation, and multiple unobserved effects. The approach

provides a useful mechanism for dealing with uncertainty in function estimation, as well as

for describing (rather flexibly) important dependence relations of the unobserved effects on

covariates and the initial observations. The techniques rely on latent variable augmentation and

a proper Markov process smoothness prior on the unknown function.

The paper has also extended existing econometric methods in order to produce tuned MCMC

algorithms for simulation of the posterior distribution, for estimation of the marginal likelihood,

and for describing the average covariate effects. Consequently, we can address the problem of

model choice and implement a simulation-based approach that enables interpretation of the

estimates. The fitting algorithms are computationally efficient, permitting the analysis of large

data panels, even in the presence of serially correlated errors. A simulation study shows that the

method performs well, and that its performance improves with larger samples. In an application

involving a dynamic semiparametric model of women’s labor force participation we illustrate

that the model and the estimation methods are practical and can help uncover interesting and

important features of the data. In particular, the application indicates that models with a single

lag and a random intercept may perform inadequately in addressing the complexity of women’s

intertemporal labor force participation decisions. In comparison, Bayes factors strongly support

a model where two lags of the dependent variable enter the probability of working, and where, in

addition to a random intercept, the effects of pre-school children on labor supply are unit-specific

and correlated with husband’s earnings.

One benefit of the model considered above is that it can be easily inserted as a component

in a larger hierarchical model (e.g. a treatment model or a model with incidental truncation).

The general method is also applicable to panels of continuous and censored data. We intend to

explore the effectiveness of such approaches in future work.
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