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Abstract

We describe a method for estimating the marginal likelihood, based on Chib

(1995) and Chib and Jeliazkov (2001), when simulation from the poste-
rior distribution of the model parameters is by the accept-reject Metropolis-
Hastings (ARMH) algorithm. The method is developed for one-block and
multiple-block ARMH algorithms and does not require the (typically) un-
known normalizing constant of the proposal density. The problem of calcu-
lating the numerical standard error of the estimates is also considered and a
procedure based on batch means is developed. Two examples, dealing with a
multinomial logit model and a Gaussian regression model with non-conjugate
priors, are provided to illustrate the efficiency and applicability of the method.

Keywords: Model comparison, Bayes factor, Gaussian regression, Lognormal density,
Log-t density, Markov chain Monte Carlo, Logit model.
Running head: ARMH Estimation

1 Introduction

In this article we describe a method for estimating the marginal likelihood of a model,
for the purpose of comparing models via Bayes factors, from the building blocks of
the accept-reject Metropolis-Hastings (ARMH) algorithm (Tierney, 1994; Chib

and Greenberg, 1995). The method is based on the framework of Chib (1995),
which has been widely used to estimate the marginal likelihood of Bayesian models
from the output of Markov chain Monte Carlo (MCMC) simulations. Chib and
Jeliazkov (2001) present a useful version of this approach for the case where some
of the full-conditional densities are non-standard and sampling requires the use of
the Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings,
1970; Tierney, 1994; Chib and Greenberg, 1995).

∗We thank Professors Edward Greenberg, Itai Sened, and Kenneth Small for valuable comments
on earlier drafts. Financial assistance from the Department of Economics at Washington University
is gratefully acknowledged.
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When MCMC simulation is implemented by the ARMH algorithm, one inter-
esting challenge is that the normalizing constant of the M-H proposal density is
typically unknown, as it depends on the target density of interest. A second diffi-
culty arises in determining the variability of the marginal likelihood estimate, which
utilizes draws from both the accept-reject (A-R) and the M-H part of the ARMH
algorithm. While the A-R and M-H sequences are mutually dependent by construc-
tion, the dependence is complicated since A-R draws can be rejected and M-H draws
can be repeated. Moreover, the two sequences are of unequal lengths – if one of the
simulation sizes is fixed, the other is randomly determined. Here we show how these
obstacles can be overcome to produce estimates that are efficient and economical in
terms of programming, additional tuning effort, and computational intensity.

The proposed method joins a substantial literature concerned with the estima-
tion of marginal likelihoods and Bayes factors (e.g. Newton and Raftery, 1994;
Gelfand and Dey, 1994; Carlin and Chib, 1995; Chib, 1995; Green, 1995;
Verdinelli and Wasserman, 1995; Meng and Wong, 1996; Chen and Shao,
1997; DiCiccio et al., 1997; Chib and Jeliazkov, 2001; Basu and Chib, 2003).
Han and Carlin (2001) offer a recent comparative review of some of these meth-
ods, in which they consider features such as computational simplicity, efficiency, and
the additional overhead due to tuning and convergence concerns. In line with the
procedure developed in Chib (1995), the approach proposed here reduces the imple-
mentation costs by estimating the marginal likelihood from the components of the
sampling algorithm without requiring additional inputs (e.g. auxiliary densities or
asymptotic approximations). Thus, once the coding of the simulation algorithm is
completed, estimation of the marginal likelihood is conceptually straightforward.

The proposed techniques are illustrated in two examples involving logistic and
Gaussian regression models. The first example considers data on commuters’ work
trips from Small (1982), while the second deals with data on women’s wages from
Mroz (1987). The examples provide practical evidence on the performance of the
estimation and model choice methods under different ARMH designs.

The rest of the paper is organized as follows. Section 2 outlines the marginal
likelihood estimation framework of Chib (1995) and Section 3 presents the ARMH
algorithm. Section 4 contains our main results on the estimation of the marginal
likelihood and its numerical standard error. We present two applications in Section 5,
and concluding remarks in Section 6.

2 Preliminaries

The marginal likelihood, m(y) ≡
∫

f(y|θ)π(θ)dθ, where f(y|θ) is the sampling den-
sity of the data y and π(θ) is the prior density of the model parameters θ, is of
fundamental importance in Bayesian model comparison, because of its role in deter-
mining the posterior model probability. Specifically, the posterior odds of any two
models are given by the prior odds of the models times their Bayes factor, defined
as the ratio of their marginal likelihoods (Jeffreys, 1961). Chib (1995) provides a
method for estimating the marginal likelihood which amounts to finding an estimate
of the posterior density π(θ|y) at a single point in its support Θ, by using the fact
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that m(y) is the normalizing constant of the posterior density and hence can be
found through the expression

m(y) =
f(y|θ)π(θ)

π(θ|y)
, (1)

which follows from Bayes’ formula, and is referred to as the basic marginal likelihood
identity. Evaluating this expression on the log scale at some specific point θ∗, one
obtains logm(y) = log f(y|θ∗)+ log π(θ∗)− log π(θ∗|y), where the first two terms are
usually available by direct calculation. An estimate of the marginal likelihood, there-
fore, requires simply an estimate of the posterior ordinate π(θ∗|y). For estimation
efficiency, the point θ∗ is chosen in a high density region of the support Θ.

Suppose that the parameters in a general MCMC sampler are grouped into B
blocks θ = (θ1, ..., θB), with θk ∈ Θk ⊆ ℜdk , k = 1, ..., B. To facilitate the notation,
let ψi = (θ1, ..., θi) denote the blocks up to i and ψi+1 = (θi+1, ..., θB) denote the
blocks beyond i, and write the posterior ordinate at θ∗ as

π (θ∗1, ..., θ
∗
B|y) =

B
∏

i=1

π
(

θ∗i |y, θ
∗
1, ..., θ

∗
i−1

)

=
B

∏

i=1

π
(

θ∗i |y, ψ
∗
i−1

)

. (2)

Consider the estimation of a typical reduced ordinate π(θ∗i |y, ψ
∗
i−1). In the context

of Gibbs sampling when the full-conditional densities, including their normalizing
constants, are fully known, Chib (1995) proposed finding the ordinate π(θ∗i |y, ψ

∗
i−1)

by Rao-Blackwellization

π
(

θ∗i |y, ψ
∗
i−1

)

=

∫

π
(

θ∗i |y, ψ
∗
i−1, ψ

i+1
)

π
(

ψi+1|y, ψ∗
i−1

)

dψi+1

≈ G−1

G
∑

g=1

π
(

θ∗i |y, ψ
∗
i−1, ψ

i+1,(g)
)

,

where ψi+1,(g) ∼ π
(

ψi+1|y, ψ∗
i−1

)

come from a reduced run, where the blocks ψ∗
i−1 are

held fixed and sampling is only over ψi (so that ψi+1,(g) results by leaving out θ
(g)
i ).

The ordinate π (θ∗1|y) for the first block θ1 is estimated with draws θ ∼ π (θ|y) from
the main MCMC run, while the ordinate π

(

θ∗B|y, ψ
∗
B−1

)

is available directly.
When one or more of the full-conditional densities are not of standard form

and have intractable normalizing constants, posterior sampling is usually conducted
via the M-H algorithm. In this case, Chib and Jeliazkov (2001) use the local
reversibility of the M-H Markov chain to show that

π(θ∗i |y, ψ
∗
i−1) =

E1

{

αMH

(

θi, θ
∗
i |y, ψ

∗
i−1, ψ

i+1
)

q
(

θi, θ
∗
i |y, ψ

∗
i−1, ψ

i+1
)}

E2

{

αMH

(

θ∗i , θi|y, ψ∗
i−1, ψ

i+1
)} , (3)

where E1 is the expectation under the conditional posterior π(ψi|y, ψ∗
i−1) and E2 is

that under the conditional product measure π(ψi+1|y, ψ∗
i )q(θ

∗
i , θi|y, ψ

∗
i−1, ψ

i+1). Here
q(θ, θ′|y) denotes the candidate generating density of the M-H chain for moving from
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the current value θ to a proposed value θ′, and the corresponding M-H probability
of accepting the move, αMH(θi, θ

′
i|y, ψ

∗
i−1, ψ

i+1), is given by

min

{

1,
f

(

y|θ′, ψ∗
i−1, ψ

i+1
)

π
(

θ′, ψ∗
i−1, ψ

i+1
)

q(θ′, θ|y, ψ∗
i−1, ψ

i+1)

f
(

y|θ, ψ∗
i−1, ψ

i+1
)

π
(

θ, ψ∗
i−1, ψ

i+1
)

q(θ, θ′|y, ψ∗
i−1, ψ

i+1)

}

.

Although (3) is a widely applicable formula that can be used in most M-H samplers,
it does require knowledge of the normalizing constant of the proposal density q. This
condition, however, is not satisfied in the ARMH algorithm.

3 The ARMH algorithm

Let π(θ|y) ∝ f(y|θ)π(θ) denote the target density and let h(θ|y) denote a source
density. In the classical accept-reject method a key requirement is that there exists
a constant c such that the condition

D = {θ : f(y|θ)π(θ) ≤ ch(θ|y)}

holds for all θ in the support Θ of the target density. The ARMH algorithm is an
MCMC sampling procedure in which the domination condition f(y|θ)π(θ) ≤ ch(θ|y)
is not satisfied for some θ ∈ Θ, and hence h (θ|y) is often called a pseudo-dominating
density. In this case, let Dc be the complement of D, and suppose that the current
state of the chain is θ. Then the ARMH algorithm is defined as follows.

Algorithm 1 One block accept-reject Metropolis-Hastings (ARMH) algorithm

1. A-R step: Generate a draw θ′ ∼ h(θ|y); accept θ′ with probability

αAR(θ′|y) = min

{

1,
f(y|θ′)π(θ′)

ch(θ′|y)

}

.

Continue the process until a draw θ′ has been accepted.

2. M-H step: Given the current value θ and the proposal value θ′:

(a) if θ ∈ D, set αMH(θ, θ′|y) = 1;

(b) if θ ∈ Dc and θ′ ∈ D, set αMH(θ, θ′|y) = ch(θ|y)
f(y|θ)π(θ)

;

(c) if θ ∈ Dc and θ′ ∈ Dc, set αMH(θ, θ′|y) = min
{

1, f(y|θ′)π(θ′)h(θ|y)
f(y|θ)π(θ)h(θ′|y)

}

.

Return θ′ with probability αMH(θ, θ′|y). Otherwise return θ.

As discussed by Chib and Greenberg (1995), the ARMH algorithm is reversible
and, under appropriate regularity conditions, produces draws from the correct den-
sity π(θ|y) as the sampling process is iterated. Chib and Greenberg (1995) also
show that the draws produced at the completion of the A-R step have a density

q(θ|y) = d−1αAR (θ|y)h (θ|y) , (4)
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which serves as the proposal density for the M-H step. Here d ≡
∫

αAR (θ|y)h (θ|y) dθ,
the normalizing constant of that density, is not available analytically, in contrast to
the standard M-H algorithm where the proposal density is fully known. In addition,
while a general M-H chain is based on a proposal density q(θ, θ′|y), which may depend
on the current state θ as in random walk chains, the ARMH algorithm is an inde-
pendence chain sampler since the proposal density is of the type q(θ′|y) = q(θ, θ′|y),
meaning that it is independent of the current state of the Markov chain. We exploit
this feature to simplify our estimation approach.

4 Proposed approach

4.1 Single-block case

In the single-block case of a general M-H sampler, Chib and Jeliazkov (2001) use
the reversibility of the Markov chain to obtain the following expression

π(θ∗|y) =

∫

αMH (θ, θ∗|y) q (θ, θ∗|y)π (θ|y) dθ
∫

αMH (θ∗, θ|y) q (θ∗, θ|y) dθ
. (5)

A simulation consistent estimate of (5) is obtained by averaging αMH (θ, θ∗|y) q (θ, θ∗|y)
in the numerator with draws θ ∼ π (θ|y), while a reduced run provides the draws
θ ∼ q (θ∗, θ|y) to average αMH (θ∗, θ|y) in the denominator. The marginal likeli-
hood estimate can subsequently be calculated by (1). To apply this estimator to the
current setting, we substitute (4) into (5), obtaining

π(θ∗|y) =

∫

αMH (θ, θ∗|y) d−1αAR (θ∗|y)h (θ∗|y) π (θ|y) dθ
∫

αMH (θ∗, θ|y) q (θ|y) dθ
. (6)

An important simplification of (6) results by letting θ∗ ∈ D, so that αMH(θ∗, θ|y) = 1
and f(y|θ∗)π(θ∗) ≤ ch(θ∗|y). It then follows that (6) can be written as

π(θ∗|y) =
f(y|θ∗)π(θ∗)

∫

αMH(θ, θ∗|y)π(θ|y)dθ

cd

=
f(y|θ∗)π(θ∗)

∫

αMH(θ, θ∗|y)π(θ|y)dθ

c
∫

αAR(θ|y)h(θ|y)dθ
,

which, upon substitution into (1), produces our first main result that

m(y) =
c
∫

αAR(θ|y)h(θ|y)dθ
∫

αMH(θ, θ∗|y)π(θ|y)dθ
. (7)

A simulation consistent estimate of m(y), based on (7), can now be obtained as

m̂(y) = c
J−1

∑J

j=1 αAR(θ(j)|y)

G−1
∑G

g=1 αMH(θ(g), θ∗|y)
, (8)

where in the numerator θ(j) ∼ h(θ|y), and in the denominator θ(g) ∼ π(θ|y). This
estimate is particularly simple and uses only quantities which are computed in the
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course of the ARMH sampling. Therefore, the additional coding and computation
for the estimation of the marginal likelihood are minimal.

We make several additional remarks. First, the two quantities in (8) come from
the same MCMC run – the draws from π(θ|y) are obtained by accepting or rejecting
the candidates from h(θ|y). Thus the fact that the ARMH algorithm is an indepen-
dence chain M-H algorithm eliminates the need for a reduced run in the estimation
of the marginal likelihood. Second, because the draws from h(θ|y) are independent
and identically distributed (iid), while those from π (θ|y) are generally closer to iid
under ARMH sampling than under independence chain M-H sampling, the variance
of the resulting estimate will generally be lower. Third, despite its simplicity, this
estimator can be applied to many Bayesian models, because the ARMH algorithm
does not require that conjugacy be maintained in order to sample from the posterior.

4.2 Multi-block case

Grouping all parameters into one block is often a good strategy, but if the dimen-
sionality of the parameter space is large, or if one wishes to exploit the conditional
structure of the model to allow for direct sampling, it may be necessary to split the
parameter vector into several smaller and more manageable pieces. The current ap-
proach readily generalizes to the multi-block case. In fact, the single-block approach
is applicable if there are multiple blocks of parameters but only one is sampled by
ARMH, since that density ordinate may be estimated at the end of (2), when all
other blocks are fixed. Hence, the interesting case is one in which the ARMH output
is used to estimate one or more of the reduced conditional density ordinates in (2).

Under the notation introduced in Section 2, let the A-R proposal density be
h (θi|y, ψi−1, ψ

i+1), which is allowed to depend on the data and the remaining pa-
rameters. Now, in the sampling of the ith block θi, the region of domination is

Di =
{

θi : f
(

y|ψi−1, ψ
i+1

)

π(θi|ψi−1, ψ
i+1) ≤ ci

(

ψi−1, ψ
i+1

)

h
(

θi|y, ψi−1, ψ
i+1

)}

,

which is generally block and iteration-specific. The M-H proposal density in the ith
reduced run takes the form

q
(

θi|y, ψ
∗
i−1, ψ

i+1
)

=
αAR

(

θ∗i |y, ψ
∗
i−1, ψ

i+1
)

h
(

θ∗i |y, ψ
∗
i−1, ψ

i+1
)

d
(

y, ψ∗
i−1, ψ

i+1
) ,

where d
(

y, ψ∗
i−1, ψ

i+1
)

is the unknown normalizing constant of q
(

θi|y, ψ
∗
i−1, ψ

i+1
)

. It
can easily be shown that the Markov chain reversibility condition used by Chib and
Jeliazkov (2001) to obtain (3) can be re-written in terms of q

(

θi|y, ψ
∗
i−1, ψ

i+1
)

,
and that its normalizing constant d

(

y, ψ∗
i−1, ψ

i+1
)

, being the same on both sides of
the reversibility equation, will cancel, so that upon integration π(θ∗i |y, ψ

∗
i−1) equals

E1

{

αMH

(

θi, θ
∗
i |y, ψ

∗
i−1, ψ

i+1
)

αAR

(

θ∗i |y, ψ
∗
i−1, ψ

i+1
)

h
(

θ∗i |y, ψ
∗
i−1, ψ

i+1
)}

E2

{

αMH

(

θ∗i , θi|y, ψ∗
i−1, ψ

i+1
)

αAR

(

θi|y, ψ∗
i−1, ψ

i+1
)} ,

where E1 is the expectation with respect to the conditional posterior π
(

ψi|y, ψ∗
i−1

)

and E2 is that with respect to the product measure π (ψi+1|y, ψ∗
i )h

(

θi|y, ψ
∗
i−1, ψ

i+1
)

.
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Because of the changing conditioning sets, in the ith block ci and Di are iteration
specific, so θ∗i will not necessarily be in Di for every iteration. We caution against
attempting the further simplifications used in the single block case because of the
risk of decreasing the efficiency of the sampler, which will occur if domination at θ∗i
is enforced by an excessively large choice of ci. In summary, we present the method
in the following steps.

Step 1: Set ψi−1 = ψ∗
i−1 and sample the set of full conditional distributions

π(θk|y, θ−k), k = i, ..., B. Let the generated draws be {θ
(g)
i , ..., θ

(g)
B }, g = 1, ..., G.

Step 2: Fix θi at θ∗i in the conditioning set to produce ψ∗
i = (ψ∗

i−1, θ
∗
i ), and sample

the remaining distributions π (θk|y, θ−k), k = i+ 1, ..., B, to generate {θ
(j)
i+1, ..., θ

(j)
B },

j = 1, ..., G. At each step of the sampling also draw θ
(j)
i ∼ h

(

θi|y, ψ
∗
i−1, ψ

i+1,(j)
)

.
Step 3: Estimate the reduced ordinate π̂(θ∗i |y, ψ

∗
i−1) as

1
G

∑G
g=1 αMH(θ

(g)
i , θ∗i |y, ψ

∗
i−1, ψ

i+1,(g))αAR(θ∗i |y, ψ
∗
i−1, ψ

i+1,(g))h(θ∗i |y, ψ
∗
i−1, ψ

i+1,(g))

1
G

∑G
j=1 αMH(θ∗i , θ

(j)
i |y, ψ∗

i−1, ψ
i+1,(j))αAR(θ

(j)
i |y, ψ∗

i−1, ψ
i+1,(j))

. (9)

Step 4: Estimate the marginal likelihood on the log scale as log m̂(y) = log f(y|θ∗)+

log π(θ∗) −
∑B

i=1 log π̂(θ∗i |y, θ
∗
1, ..., θ

∗
i−1).

Therefore, in the multi-block ARMH setting, the marginal likelihood estimate is
readily available after a straightforward modification of the technique in Chib and
Jeliazkov (2001). The approach is also easily applicable in conjunction with other
MCMC algorithms, such as M-H or direct sampling from the full-conditionals.

4.3 Numerical standard error of the marginal likelihood estimate

In this section we discuss how the numerical standard error (nse) of the marginal
likelihood estimate can be derived. The nse gives the variation that can be expected
in the marginal likelihood estimate if the simulation were to be repeated. We specif-
ically focus on the calculation of the nse for the one-block case of Section 4.1, and
show that the multi-block case can be handled by existing methods.

There are two complications in estimating the variance of the ratio in (8). One
obvious problem is that the lengths of the series of draws from the pseudo-dominating
and target densities are different, and hence one can not directly compute the co-
variance between the numerator and denominator draws. Second, in considering the
variability of an estimate obtained by (8), one has to account for the variability in
the numerator sample size J . We deal with these problems by applying an approach
based on the method of batch means. The denominator quantities αMH(θ

(g)
1 , θ∗1|y),

g = 1, ..., G, are batched, or sectioned, into v non-overlapping subsamples of lengthm
with v = G/m. Each of the denominator subsamples is matched with the draws from
the A-R step that were necessary to produce it, thus forming the corresponding v
non-overlapping numerator batches of length ni ≥ m, i = 1, ..., v, with

∑v

i=1 ni = J .
Denote the batch means of the numerator quantities by {Ni}, and those in the
denominator by {Di}, and let Bi = Ni/Di, i = 1, ..., v. Then the variance of

a =

{

J−1
∑J

j=1 αAR(θ(j)|y)

G−1
∑G

g=1 αMH(θ(g), θ∗|y)

}
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is estimated as var (a) = var (Bi) /v. The batch length m is chosen large enough
to guarantee that the first order serial correlation between the batch means is less
than 0.05, and to avoid small values of Di which may produce explosive Bi (in the
two examples below, we used m = 250). The variance of the log marginal likelihood
can be found by the delta method as var(log m̂(y)) = var(a)/a2. The nse of the log
marginal likelihood estimate is the square root of var(log m̂(y)).

Extending the calculation of the nse to the multi-block setting is straightforward
by following Chib (1995) for blocks which are sampled directly, and by following
Chib and Jeliazkov (2001) for blocks sampled by the M-H algorithm. We em-
phasize that the latter approach is also applicable to the multi-block ARMH case of
Section 4.2, since the numerator and denominator series in (9) have equal lengths.
If the prior or likelihood ordinates need to be estimated, then the variance of these
estimates must be incorporated by a separate calculation.

We mention that the accuracy of the proposed approach for estimating the nse
has been verified in the subsequent examples by repeating the posterior simulations
100 times. The variability of the marginal likelihood estimates from the replications
closely mirrored those from the above approach, thus providing a useful validation
of this method.

5 Examples

We apply the above methods in the context of a multinomial logit and a Gaussian
regression model, and illustrate the impact of several ARMH designs on the perfor-
mance of the MCMC sampler and the marginal likelihood estimation approach. The
modelling employs non-conjugate priors because a researcher may wish to incorpo-
rate prior information in a more flexible way than that afforded by some particular
family of conjugate distributions (as in the Gaussian case) or because such conjugate
priors may simply be unavailable (as in the logit model). With non-conjugate priors,
however, there is no guarantee that the posterior or its full conditionals will be well
behaved—e.g. they could exhibit multimodality, skewness, or kurtosis (O’Hagan,
1994, Chapter 3)—thus complicating estimation and marginal likelihood computa-
tion. Fortunately, ARMH sampling is well suited to these settings as it does not
require conjugate priors or global domination of the proposal over the posterior; the
ARMH algorithm also tends to produce MCMC draws that are closer to iid than
those from a similarly constructed M-H chain.

5.1 Data and models

Our first example deals with a discrete choice model—the multinomial logit—which
has been widely used in many fields of economics (Train, 2003). Specifically, we
consider estimation and marginal likelihood computation in the context studied by
Small (1982) and Brownstone and Small (1989) , where 522 San Francisco Bay
Area commuters reported a regular time of arrival relative to the official work start
time. These arrival times (ranging between 42.5 minutes early and 17.5 minutes
late) are grouped into twelve 5-minute intervals and the probability that commuter
i’s arrival interval is t is modelled as pit = ex′

it
β/

∑12
k=1 e

x′

ik
β, where the characteris-

tics x include 13 socioeconomic, behavioral, and transportation-mode variables as
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described in Appendix 1. Under the prior β ∼ N13(β0, B0), the posterior density
is given by π(β|y) ∝ fN(β|β0, B0)

∏522
i=1

∏12
t=1 p

yit

it , where yit ∈ {0, 1} is the binary
variable indicating whether individual i chose alternative t and fN(·|·) denotes the
normal density. The posterior can not be sampled directly as it does not belong to
a known family of distributions.

Our second application is based on a simple wage determination model using
data from Mroz (1987). The goal is to estimate a wage offer function for a sample
of 428 employed married women, conditional on four covariates – an intercept, ex-
perience in the labor market, experience squared, and education. Linear Gaussian
models have been well studied under the usual (normal-gamma) conjugate and semi-
conjugate priors (Zellner, 1971). Here, however, we allow for an added degree of
flexibility in assessing the prior information and discuss estimation under heavy-
tailed non-conjugate prior distributions. Specifically, for i = 1, ..., 428, the model is
given by yi = x′iβ+εi, where yi represents woman i’s log-wage, xi is her vector of co-
variates, and εi ∼ N(0, σ2). The priors for the parameters β and σ2 are given by the
multivariate-t and the log-t distributions β ∼ Tνb

(β0, B0) and σ2 ∼ logTνs
(s0, S0),

respectively. These priors allow for additional flexibility by varying the tail behavior
through the degrees of freedom parameters νb and νs.

To illustrate this point, Figure 1 shows the log-pdfs of the inverse gamma, the
lognormal, and two log-t densities with 5 and 40 degrees of freedom (the means and
variances match those of the lognormal distribution). The figure shows that the
inverse gamma assigns less mass in the left tail of the distribution than any of the
other alternatives; depending on the degrees of freedom parameter, the log-t density
can have a right tail that is either heavier or thinner than that of the inverse gamma.
As expected, the log-t density approaches the lognormal as νs becomes large. Other
general priors are also conceivable and can be handled similarly.

0 2 4 6 8 10 12 14 16 18
−10

−9

−8

−7

−6
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Figure 1: Log-pdfs for the inverse gamma, lognormal, and two log-t densities.

5.2 Implementation

In many models estimated by ARMH, including the two discussed above, it is possi-
ble to sample the posterior distribution π(θ|y) in one block by using a tailored source
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density h (θ|y) = fT (θ|µ, τV, ν), where fT (·|·) denotes a multivariate-t density with
mean µ, symmetric positive definite scale matrix τV (with τ being a tuning param-
eter whose role is illustrated below), and ν degrees of freedom. We take µ as the
mode of the log-likelihood and V to be the inverse of the negative Hessian of the
log-likelihood evaluated at µ, and set ν = 10. Having obtained the proposal density,
posterior simulation is conducted as in Section 3, while the marginal likelihood and
its nse are obtained as in Sections 4.1 and 4.3, respectively.

Often, however, one may also wish to exploit the conditional structure of the
model and use the multi-block algorithm of Section 4.2. In the Gaussian model,
the multi-block approach is applied, quite naturally, by treating β and σ2 as sep-
arate blocks and sampling proceeds by iteratively drawing from π(β|y, σ2) and
π(σ2|y, β). The conditional pseudo-dominating densities are taken to be h (β|y, σ2) =
fT (β|µ1, τ1V1, ν1) and h (log(σ2)|y, β) = fT (log(σ2)|µ2, τ2V2, ν2), where we take the
parameters µ1, V1, µ2, and V2 to be the (analytically available) mode and modal
dispersion of the full conditional Bayes updates under non-informative priors. The
marginal likelihood is then estimated by writing (1) as

m (y) =
π (β∗)

π (β∗|y)
×
f (y|β∗, σ2∗)π (σ2∗|β∗)

π (σ2∗|y, β∗)
, (10)

where an estimate π (β∗|y) can be obtained by (9), and the second fraction on the
right-hand side can be estimated as

c2 (β∗)

{

J−1
∑J

j=1 αAR(σ2(j)|y, β∗)

G−1
∑G

g=1 αMH(σ2(g), σ2∗|y, β∗)

}

,

which is a simple application of the one-block estimator (8), since β is fixed at β∗.
In the logit model, Appendix 1 suggests certain natural groupings, based on co-

variate types, that can be used to partition the 13× 1 vector β. To construct a two-
block algorithm, we collect the coefficients on the reporting error and travel time vari-
ables in β1 (5×1), and those on the early and late arrival covariates in β2 (8×1). We
use the conditional pseudo-dominating densities h (β1|y, β2) = fT (β1|µ1|2, τV1|2, ν)
and h (β2|y, β1) = fT (β2|µ2|1, τV2|1, ν) where the parameters µ1|2, V1|2, µ2|1, and V2|1

are obtained from the overall mode µ and modal dispersion matrix V of the single
block case, using as a rough approximation the conditional updates for the moments
of a Gaussian distribution. This method of tailoring performed competitively in our
example relative to tailoring by optimization at each iteration, and is considerably
faster and less demanding. Hence, m(y) is estimated similarly to (10), using (9) to
compute π (β∗

1 |y) and (8) to estimate f (y|β∗
1 , β

∗
2)π (β∗

2 |β
∗
1) /π (β∗

2 |y, β
∗
1).

The performance of the above algorithm designs can be illustrated by the ineffi-
ciency factors for the sampled parameters. The inefficiency factors are calculated as
1 + 2

∑L

l=1 ρk(l), where ρk(l) is the sample autocorrelation for the kth parameter at
lag l, and L is chosen at values where the autocorrelations taper off. The inefficiency
factors approximate the ratio of the numerical variance of the posterior mean from
the MCMC chain relative to that from hypothetical iid draws. We consider three
one-block ARMH Markov chains with different degrees of pseudo-domination, using
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the quantity p = (ch) / (fπ) to represent the relative heights at µ, which, together
with the tuning parameter τ determine the region of domination. Larger values of
p and τ produce larger regions of domination. In Figure 2, we illustrate the ineffi-
ciency factors for three settings of the tuning parameters, namely (τ = 1, p = 1.25),
(τ = 1.5, p = 1.5), and (τ = 2, p = 1.75). The figure shows that ARMH simulation
is generally efficient and the sample becomes essentially iid as τ and p are increased.
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Figure 2: Inefficiency factors of the one- and two-block logit and Gaussian model
parameters for three settings of the tuning parameters τ and p.

We emphasize that the choice of blocking is not unique and is something that
should be determined by the researcher in the context of the particular model and
data under consideration. Figure 2 indeed shows that one-block sampling can pro-
duce more efficient samples in some settings, but that multi-block simulation can
dominate in others. In practice it is useful to (i) group parameters that are corre-
lated into one block and sample them jointly, and (ii) group parameters in a way
that allows for easy construction of suitable pseudo-dominating densities.

It is interesting to look at the posterior distributions of the logit coefficients β9

and β10 (on the late arrival variables SDL and SDL · WC, respectively). Both
marginal posteriors, shown in Figure 3, are non-Gaussian and skewed, with respec-
tive skewness coefficients of −0.59 and 0.59. In cases like these, frequentist asymp-
totic approximations for constructing confidence intervals (also shown in Figure 3),
as well as Bayesian approximations of the marginal likelihood assuming that the
posterior is approximately normal (DiCiccio et al., 1997) may be inaccurate. Here,
the frequentist estimates would tend to understate blue-collar commuters’ desire to
avoid arriving too late; they also imply an understated and statistically insignificant
(at the 10% level of significance for a two-sided test) difference between the im-
pact of SDL on blue-collar and white-collar commuters. In contrast, the posterior
distribution assigns probability of 0.994 to positive β10.

In Table 1, we present the log marginal likelihood and nse estimates correspond-
ing to the simulations from Figure 2. We see that the variability of the estimates is
very small and decreases when the regions of domination increase. But the compu-
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Figure 3: Two parameters in the logit model: posterior distributions (solid lines)
and frequentist asymptotic distributions (dotted lines).

tational loads increase as well for large τ and p – approximately 11000 A-R draws
are needed to generate the 10000 ARMH draws for the smallest values of τ and p,
about 1.5 times as many are needed for the intermediate values, but about five times
that number is needed for the largest τ and p. This illustrates the trade-off between
numerical and statistical efficiency that is inherent in the ARMH sampler – as the
region of domination becomes larger more draws in the A-R step are needed to gen-
erate a given sample, but that sample tends to be closer to iid, thus producing more
efficient parameter and marginal likelihood estimates than a typical M-H algorithm.

Table 1: Log marginal likelihood estimates for the Gaussian and logit models.

Simulation designs
(τ = 1, p = 1.25) (τ = 1.5, p = 1.5) (τ = 2, p = 1.75)

One-block logit model:
log m̂(y) −1017.180 −1017.233 −1017.220
nse (0.033) (0.012) (0.007)

Two-block logit model:
log m̂(y) −1017.212 −1017.237 −1017.207
nse (0.027) (0.009) (0.011)

One-block Gaussian model:
log m̂(y) −458.590 −458.576 −458.584
nse (0.003) (0.003) (0.004)

Two-block Gaussian model:
log m̂(y) −458.582 −458.581 −458.587
nse (0.006) (0.006) (0.006)

6 Discussion

This paper has presented a method for estimating the marginal likelihood from the
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building blocks of the ARMH algorithm. The approach is based on the general
framework of Chib (1995) and the extension considered in Chib and Jeliazkov

(2001), where some of the full-conditional densities are intractable and simulation
requires the M-H algorithm. The current method deals with the presence of an
unknown normalizing constant in the proposal density and overcomes the difficulties
in determining the variability of the marginal likelihood estimate. We show that
this estimate and its variability are straightforward to obtain from the output of the
ARMH sampler. In two examples, we discuss implementation issues under several
ARMH designs and show that the techniques are efficient and generally applicable.

Appendix 1: Covariates in the largest model in Small (1982)

The analysis uses 13 covariates of four types – reporting error (R10 and R15), travel
time (TIM , TIM · SGL, and TIM · CP ), early arrival (SDE, SDE · SGL, and
SDE · CP ), and late arrival (SDL, SDL · WC, SDLX, D1L · WC, and D2L).
In the preceding, SD is Schedule Delay, i.e. arrival time minus official work start
time rounded to nearest 5 minutes (SD = {−40,−35, · · · , 10, 15}); R10 = 1{SD =
−40,−30,−20,−10, 0, 10}; R15 = 1{SD = −30,−15, 0, 15}; TIM is Travel time in
minutes; SDE = max{−SD, 0}; SDL = max{SD, 0}; D1L = 1{SD ≥ 0}; FLEX
is reported flexibility for arriving time; D2L = 1{SD ≥ FLEX}; SGL is a dummy
for a one-person household; CP is a carpool dummy reconstructed in Brownstone

and Small (1989) to account for previously missing data; WC is a dummy for a
white collar worker; and SDLX = max{SD − FLEX, 0}. For further details and
some alternative models, see Small (1982) and Brownstone and Small (1989).
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