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Abstract

Individuals in many social networks imperfectly monitor other individuals’ net-
work relationships. This paper shows that, in a model of a communication
network, imperfect monitoring leads to the existence of many ine cient equilib-
ria. Reasonable restrictions on actions or on beliefs about others’ actions can,
however, eliminate many of these ine cient equilibria even with imperfect mon-
itoring. Star networks, known to be e cient in many settings, are shown to
have desirable monitoring characteristics. More generally, this paper provides
a formal framework in which to study incorrect perceptions as an equilibrium
phenomenon in social networks.
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1 Introduction

Friendships and other interpersonal relationships play important roles in the transmission of

information, from news of job openings (Granovetter [21] [22]), to details about growing a

particular crop (Conley and Udry [9]), to tips about welfare programs (Bertrand, Luttmer,

and Mullainathan [3]). Moreover, these social networks evolve as individuals form, benefit

from, and sever ties with others even though they, in the language of game theory, imperfectly

monitor others’ relationships in the network. For example, Friedkin [16] finds that an

individual’s “horizon of observability” is extremely restricted, usually comprising her direct

network contacts and her contacts’ contacts, and others have found how limited horizons

lead network participants to maintain incorrect perceptions of other participants’ network

relationships (Kumbasar, Romney, and Batchelder [26], Bondonio [4], and Casciaro [6]).

Economists to date have used game theory to examine the formation and persistence of

social networks, yet their work assumes that individuals, in equilibrium, completely observe

(i.e., perfectly monitor) the entire network’s structure. As such, the impact imperfect

monitoring has on network formation outcomes is little understood, and many questions

remain unanswered. How does observation of others’ ties a ect an individual’s strategic

decision to form ties? Does limited observation lead individuals to form di erent network

relationships than they would otherwise? Are the di erences economically meaningful? How

much observation must individuals have to ensure the formation of an e cient network?

This paper presents the first systematic study of imperfect monitoring in endogenously

forming social networks. In a simple model of a communication network, I mimic the

observation present in actual networks by assuming that each individual only observes those

network ties that are within x links from her in the network. For example, if x = 1 then a

player only observes her direct network ties, if x = 2 then she observes her direct ties and

the direct ties of her network neighbors, and so on. To find the network equilibria, I must

account for players’ observational limitations, however, the Nash Equilibrium concept is not

appropriate since it imposes perfect monitoring. Instead, I use the Conjectural Equilibrium

concept which is designed for games with imperfect monitoring and allows me to precisely

model each individual’s observation.2 I can then compare the Conjectural Equilibria under

various levels of x to see how the set of equilibrium networks changes as observation changes.

2See Battigalli, Gilli, and Molinari [2] and Gilli [20] for discussion of Conjectural Equilibrium.
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This approach reveals how ine cient equilibria arise from imperfect monitoring. Perfect

monitoring or x n
2
(n is the number of players) is su cient for e cient equilibria. However,

as x decreases from n
2
, equilibria can be over-connected in that individual may maintain costly

ties to what are not observed to be parts of the network already accessed through other ties.

Moreover, as x decreases from n 2
4
, equilibria can also be under-connected when individuals

cannot observe which areas of the network are currently not accessed. These ine ciencies

arise from imperfect monitoring in two ways. First, players can incorrectly believe with high

probability that the network is e cient and thus not make utility improving changes, even

if the network is e cient. Second, players can correctly believe the network is not e cient

but at the same time assign positive probability to many di erent networks being possible,

thereby not knowing which move is a utility improving one. In each case, the imperfect

monitoring provides no information to contradict players’ beliefs, and so no player has an

incentive to change the network.

Since the social costs from these ine ciencies can be significant, I examine su cient

conditions for e ciency. I find that reasonable restrictions on individuals’ relationships and

on their beliefs about others’ relationships can eliminate many ine cient equilibria–even

under very small x. Assuming players have common knowledge of rationality eliminates

under-connections for any x. The flow identification condition, an original concept that

allows players to identify the marginal benefit of each link without observing the entire

network, eliminates over-connections for any x. Finally, the strictness refinement, which

rules out any equilibria where at least one individual has multiple best responses, eliminates

both over- and under-connections when x 2 and results in only e cient, center-sponsored

star equilibrium networks. This last finding deserves especial note. While previous work

shows that star networks have special e ciency and stability properties, this paper shows

that stars also have special informational properties. Because in a star network every

connected individual is two or fewer links away, each individual with x 2 can observe,

in equilibrium, who else is connected to the network. I show how this knowledge yields

e ciency. Hence, the strictness refinement ensures e cient equilibria even under the severe

imperfect monitoring akin to that reported by Friedkin [16].

This paper fits into a growing literature that uses game theory to study endogenous

network formation.3 One segment of this literature examines broad classes of “allocation

3Recent examples of the growing literature by economists on networks include Dutta and Mutswami [14],
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rules” (i.e., how network structures map to players’ utilities) to find general features of net-

works that meet certain desirable properties, such as a coincidence of stability and e ciency.

Because the set of allocation rules is very large, a second category of research looks at par-

ticular network settings and their naturally appropriate allocation rules. My paper is in this

second category since it considers a specific network model. Within this category, my work

is most closely related to Bala and Goyal [1]; I add imperfect monitoring to their commu-

nication network game. The closest work in the first category is by Jackson and Wolinsky

[24], who study the tension between stability and e ciency. My paper considers a di erent

tension–that between e ciency and imperfect monitoring–in a specific network context.

My paper also makes a methodological contribution by being the first to use a non-Nash

equilibrium concept in a network formation game. The network setting is a natural one for

non-Nash concepts, not only because people imperfectly monitor others’ actions in actual

social networks, but also because the network provides immediate structure to the modeling

of players’ information about others’ actions. In this way, my work provides social network

researchers of other disciplines with a formal game theory framework within which to study

incorrect network perceptions as an equilibrium phenomenon.4

The paper proceeds as follows. Section 2 introduces the basic model, and Section 3

examines it under perfect monitoring. Section 4 introduces imperfect monitoring and its

implications for network formation. Section 5 examines further restrictions on players’

beliefs and actions. Section 6 briefly discusses other variations, and Section 7 concludes.

2 The Basic Model

Suppose each player i N = {1, ..., n}, 3 n < , knows an informative “fact” worth

v to each player. A fact might be weather news, information about lucrative investment

opportunities, descriptions of new productive techniques, etc. Although each individual

automatically knows her own fact, the only way to learn another’s fact is by communicating

with that person directly or indirectly through one or more other individuals. Direct com-

Dutta and Jackson [12], Curranini and Morelli [10], and Kranton and Minehart [25]. Dutta and Jackson [13]
compile much recent work, Review of Economic Design (2000) contains a recent symposium, and Jackson
[23] provides a recent review of issues and results.

4My formal framework could be used by researchers of social perceptions (Kumbasar et al. [26], Bondonio
[4], Casciaro [6]), the evolution of social relationships (e.g., Carley [5], Zeggelink [29], Doreian and Stokman
[11]), and their implications for other social phenomena, such as mass movements (e.g., Chwe [7], [8]).
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munication between any two players occurs if one or both players initiate a communication

tie to the other, and initiating a link costs c < v to the initiator. This cost captures the

time, e ort, or money expended or invested to form the communication link.

Each i chooses with whom to initiate ties. Let si = (si1, ..., sii 1, sii+1, ..., sin) denote i’s

strategy, where sij = 1 signifies that i initiates a link to j, and sij = 0 signifies that i does

not initiate a link to j. Let Si denote i’s set of possible link initiation profiles, and denote

S = S1×...×Sn. Strategy profile s = (s1, ..., sn) S can be represented as a graph or network

structure where nodes represent players and links represent communication ties. Player i

learns j’s fact only if there is a path that connects them. Formally, there is a path between i

and j if either one of the following is true: max {sij, sji} = 1 (direct communication), or there
exist players j1, ..., jm distinct from each other and from i and j such that max {sij1, sj1i} =
max {sj1j2 , sj2j1} = · · · = max {sjmj, sjjm} = 1 (indirect communication).5
A component Ni N is a subset of s with a path between any two players in the

component and with no path between any player in the component and any player out of

the component. Denote ni the number of players in Ni. Let Ii denote the set of individuals

to whom i initiates a link, Ii = {j N |j 6= i, sij = 1}, and (abusing notation) also the
number of individuals in that set.

Each player has the following utility function ui (si, s i) = niv Iic. Note that facts are

transmitted clearly through the network (i.e., no flow decay) so that the value of j’s fact to i

is the same whether i and j are directly or indirectly connected. Figure 1(a) illustrates one

possible s with n = 6. Player 1 has utility u1 = 4v 2c since her component N1 = {1, 4, 5, 6}
has four players n1 = 4 and she initiates two direct6 links I1 = {5, 6}, both of which she
initiated as represented by the dot7 on her side of each direct link. Note that 6’s utility is

u6 = 4v even though she did not initiate links since n6 = 4.

5Even though information flows both ways through a link, these are directed graphs because sij = 1 is
distinct from sji = 1 in the assignment of link costs. A non-directed graph is one wherein sij = 1 and
sji = 1 have identitical interpretations. See Wasserman and Faust [28] for a discussion of directed graphs.

6I use the term “direct link” to denote a link that connects i and j directly (max {sij , sji} = 1) and not
through other players, and this term is to be distinguished by the term “directed graph” which refers to
qualitative features of links (see footnote 5).

7Directed networks are usually denoted by arrows, however, I use dots instead of arrows in this model
because arrows can be misleading. The network is directed because of the costs and not the flow of facts,
and an arrow might give the impression that facts only flow in the direction indicated by an arrow. The
dot is to distinguish the directed nature of the graph from the flows, and it has been used in earlier work in
this manner (e.g., Bala and Goyal [1]).
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I analyze this model when players simultaneously choose link initiations. Before making

decisions, players commonly know n, v, c, and all other assumptions stated above. After

decisions are made, each player knows her resulting utility ui and her set of initiations Ii, and

each player observes some subset of all chosen actions (described later). I restrict attention

to the pure equilibria of this well defined network game hSi, uiii N .
Certain structural features play prominent roles in this paper. A network can have

redundant links that form a cycle. In Figure 1(a), there is a direct redundant link, i.e., a

2-player cycle, between 4 and 5 because setting s45 = 0 while leaving s54 = 1 would not

decrease Ni for any i. There is also a 3-player cycle consisting of 1, 5, and 6 since 1 receives

5’s fact from 5 directly or through 6. Another feature is network connectedness. A network

is connected if Ni = N for all i, while a disconnected network is such that Ni N for all i.

Figure 1(a) is disconnected with redundant links, Figure 1(b) is connected with redundant

links, and Figure 1(c) is disconnected but without redundant links. Connected networks

that have no redundant links, like Figures 1(d) and 1(e), are called minimally connected and

have nice e ciency properties.

Proposition 1: The set of e cient networks is the set of minimally connected

networks. (Bala and Goyal [1])

Since v > c, any i with Ni N is strictly better o without making anyone worse o by

initiating a link to j / Ni, and it follows that an e cient network must be connected. Since

redundant links are clearly ine cient, only minimally connected networks are potentially

e cient. Since each minimally connected network yields total utility n2v (n 1) c, they

are all e cient in the sense of both sum of utilities and Pareto optimality.8

There are many advantages to using this model for my study. It captures many elements

of actual social networks, such as the transmission of valuable information informally through

individuals. Simultaneous link choices capture the notion that these networks arise from

decisions made by individuals without formal coordinating devices. Since communication

networks often span large distances, it is a meaningful setting in which to explore imperfect

monitoring. Moreover, previous work studies this model under the assumption of perfect

monitoring (e.g., Bala and Goyal [1], Galeotti, Goyal, and Kamphorst [19]), so it is a useful

8Both notions of utility have been used in networks. In general, the Pareto concept is appropriate when
side payments are not allowed (Jackson [23]).
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benchmark. Finally, because it is non-cooperative, I can use concepts already developed in

non-cooperative game theory for the study of imperfect monitoring.

3 Perfect Monitoring

Perfect monitoring (full observation) implies that, after players simultaneously make their

link decisions, each player sees the entire resulting network structure. The resulting network

s is an equilibrium if, after fully observing s , no player i knows of a deviation from si that

makes her strictly better o . Thus, the equilibrium concept for perfect monitoring should

require each player to choose a best response to what all others actually do (i.e., to what all

others are observed to do), and this is exactly what the Nash Equilibrium concept requires.

Definition: A (pure) Nash Equilibrium of game hSi, uiii N is a profile of
strategies {si }i N such that for each i N , ui

¡
si , s i

¢
ui
¡
s0i, s i

¢
s0i Si.

The set of network equilibria under perfect monitoring must thus be the set of Nash

Equilibria, which can be completely characterized.

Proposition 2: Under perfect monitoring, the set of Nash Equilibria is the set

of minimally connected networks. (Bala and Goyal [1])

The logic is straightforward (see Bala and Goyal [1] for a formal proof). Suppose

simultaneous link choices with n = 6 result in Figure 1(a). This network is not an equilibrium

for two reasons. First, since i observes s, she knows exactly who is in Ni and who is not

in Ni. Since v > c, she is strictly better o initiating a link to any j / Ni, and it follows

then that any equilibrium must be connected. Second, since i observes s, she observes any

redundant links, which she will not maintain in equilibrium. Thus, an equilibrium must

be minimally connected. That any minimally connected network is an equilibrium follows

because any non-redundant link must be a best response since the lowest marginal benefit

it can provide, v, must be greater than the marginal cost c.

The potential role of coordination is apparent since there is no guarantee that a mini-

mally connected network will result from simultaneously chosen links. Although we might

think that formal coordination is required for e ciency, Bala and Goyal [1] describe simple

dynamics in which players’ actions (in a repeated game set-up) will converge to minimally
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connected networks without any formal coordination between players. Recent experimental

work supports the notion that e cient networks in this game can be reached without formal

coordination.9 Thus, we can put aside coordination issues for the moment without the

fear that we are missing an essential factor driving the equilibria. More importantly, since

any full information equilibrium is e cient, if we find ine cient equilibrium under imperfect

monitoring then it must be due to the change in informational structure.

4 Imperfect Monitoring

4.1 Methodological Issues

The possibility of imperfect monitoring raises three methodological issues. First, if players

do not observe the links of all other players, then what subset of links do they observe? I

assume that each individual observes all links within geodesic distance x 1.10 The area

enclosed by dotted lines in Figure 2(a) captures what player 1 observes in the given network

when x = 1. She observes only her links with 5 and 6 and no other links. When x = 2,

as in Figure 2(b), she additionally observes the links between 4 and 5 and between 5 and

6. Figures 2(c) and 2(d) capture what she observes with x = 3, and x = 4 respectively.

Because 7 and 8 are not in her component, she will never observe them under any finite x.

Clearly, holding the structure fixed and increasing x results in each player observing weakly

more actions. Also notice that at low x, one player will generally observe some part of the

network that is also observed by another, but there might also be parts of the network one

player observes that another does not, and also that neither observes.

This setting, which I call x-link observation, mimics to some extent the empirical finding

that individuals have limited horizons of observability in that they are more likely to correctly

perceive individuals that are closer to them in their networks (Friedkin [16], Kumbasar,

Romney, and Batchelder [26], Bondonio [4], Casciaro [6]). There is also a strategic reason

to consider this setting. After decisions result in a network outcome, player i could tell j

of some player k unobserved by j in hopes of getting j to link with k, which could be to i’s,

9Falk and Kosfeld [15] present results from experiments testing Bala and Goyal’s [1] predictions. Equi-
libria in the 2-way flow model (used in my paper) are not reached as often as in the 1-way flow model, a
finding that likely arises from the combination of notions of fairness and the asymmetry in payo s of the
2-way flow model’s strict equilibria.
10The x 1 restriction is a natural one. A player should be aware of her own direct relationships whether

or not she initiated the relationships.
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but not j’s, advantage. Although some “cheap talk” might entail credible claims, I do not

study the bounds of cheap talk credibility here and leave such work to future researchers. I

do note, however, that players might have di culties establishing the credibility of claims,

which could leave them to “believe only what they see,” as is the case in x-link observation.

This discussion raises a second question: what is the appropriate equilibrium concept

if players do not fully observe others’ actions? A Nash Equilibrium assumes that players

commonly know (in equilibrium) the actual profile of all players’ actions, and a concept that

imposes such knowledge is not appropriate if players cannot observe all actions. I instead

use the non-Nash concept called Conjectural Equilibrium that is designed for games with

imperfect monitoring. Such a game is defined as follows:

Definition: An imperfect-monitoring game is a combination hSi, ui,miii N .

After actions have been chosen and s generated, player i receives a message (signal) mi

that reveals some subset of s. In general, mi will depend on the actions chosen, so let

i’s signal be a function mi (s) (or mi (si, s i)). In a perfect monitoring environment, after

players’ choices result in s, mi reveals s to each i, i.e., mi (s) = s i. With imperfect

monitoring in the form of x-link observation, mi (s) reveals to i that part of s within x links

of i in i’s component Ni in that s. Let Li (y) be the set of j Ni that are exactly y links

away along some path from i to j, where Li (0) = {i} and Li ( ) = {j|j / Ni}. We can

now formally describe x-link observation by the following assumption.

Assumption: Consider a network game with imperfect monitoring character-

ized by x-link observation. After players make simultaneous choices resulting in

s, player i’s message mi (s) is the following:

mi (s) =

½
sj for all j {Li (0) Li (1) · · · Li (x 1)} and

skj for all k and j such that k Li (x) and j Li (x 1)

¾
.

The first part in the bracket is all links made by any player x 1 links or closer to i.

The second part further adds those players x links away who link to someone x 1 links

away. Note that links initiated by someone x+ 1 links away will not be observed, nor will

links initiated by someone x links away to someone x+ 1 links away.

To define a Conjectural Equilibrium, let i (s) be a probability distribution over all s S,

and interpret i as i’s beliefs.
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Definition: A Conjectural Equilibrium is a profile of actions and beliefs

(si , i )i N such that for each i N :

(i)
P

s S i (s)ui (si , s i)
P

s S i (s)ui (s
0
i, s i) , for all s

0
i Si;

(ii) for any s S with i (s) > 0, it must be that mi (s ) = mi (s).

Condition (i) states that in equilibrium each player’s action si must be a best response

given her conjectured beliefs i . Condition (ii) states that for any player that assigns non-

zero probability to a certain state of the world s, the signal received by that player in that

state of the world must equal that player’s signal in the true state of the world s . In other

words, a player’s beliefs must not contradict the information about the state of the world in

the player’s message.11

For the network game, a (si , i )i N combination is an equilibrium if, after making si-

multaneous link decisions and after receiving signals, no player has an incentive to change

beliefs or actions. As is standard in game theory, I assume players commonly know the

game set-up, which includes knowledge of v, c, utility functions, and x (i.e., the signal func-

tions). Because players act to maximize utility, it is also commonly assumed that players

know their payo s. For this reason, I make the added restriction that i must also account

for i’s equilibrium utility ui in the sense that i cannot assign non-zero probability to a

state s0 state would yield her utility di erent than ui . I impose this restriction because it

captures the idea that an equilibrium network should be one in which a player will not want

to change her decision even after ex post link observation and utility realization. Note that

restriction is implied by full information but not by imperfect monitoring, so my making this

restriction explicit is new to the network literature.

An immediate implication of this restriction and commonly knowledge of the game set-up

is the following:

Remark 1: Consider an equilibrium (si , i )i N , where ni is the number of

players in i’s component in s . For any state s0 S such that i (s
0) > 0, it is

necessary that the number of players in i’s component in s0 must also equal ni .
11See Battigalli, Gilli, and Molinari [2] and Gilli [20] for complete descriptions of imperfect monitoring

games and the Conjectural Equilibrium concept. I note that Fudenburg and Levine’s [17] Self-confirming
Equilibrium is a Conjectural Equilibrium with the restriction that i’s signal is the strategies that others
play at all information sets that are reached with positive probability, so that i’s beliefs are correct along
the equilibrium path but not necessarily correct o that path. Also note that the Conjectural Equilibrium
concept does not impose rationalizability, although it can be added (Rubinstein and Wolinsky [27]).
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The result follows from the utility function ui = ni v Iic. With v, Ii, and c known by

i, any s0 that yields utility di erent than ui would do so only because i’s component in s
0

di ered in size from ni, and i knows s
0 cannot be the true state since she knows ui . It is

thus necessary that any state assigned non-zero probability has ni in i’s component.
12

It is well known that the Conjectural Equilibrium concept potentially allows for many

possible equilibria because it places so few restrictions on beliefs. A third methodological

question arises: if a player does not observe certain players’ links, then what should that

player believe about those players’ links? Instead of making arbitrary assumptions about

what players should believe, I use a di erent approach. In essence, I will pick a network

structure and look for beliefs that make the actions-beliefs combination an equilibrium.

One shortcoming of this approach is that it might allow for a very large set of equilibria,

which would imply weak predictive power for this equilibrium concept. However, this is also

an advantage since I can find all possible equilibrium structures without making additional

restrictions about what players should believe about unobserved actions. Also, since the only

restriction on beliefs is that they be consistent with revealed information (e.g., conjectural

equilibrium may be thought of as a necessary condition for equilibrium), it allows me to

find the set of equilibrium networks that could arise under any network dynamics and beliefs

updating procedures. Moreover, if I am able to find a small set of equilibrium networks even

under these weak conditions, then the results will be that much more striking. Although I

consider restrictions later (Section 5), the concept is thus, for now, less restrictive than other

concepts in a meaningful way.13

4.2 Equilibria with x-link Observation

The definition of Conjectural Equilibrium implies the following.

12Instead of restricting i to account for knowledge of ui and the game set-up, I could alternatively obtain
the result stated in Remark 1 by making ni part of i’s signal. I chose to not include it in i’s signal so that
the signals refer only to i’s observation of others’ links and not the observation of her utility.
13For example, consider the di erence between a Conjectural Equilibrium and a Bayesian Equilibrium.

The latter assumes that players begin with a common prior over possible states of the world, and that
they use all available information to update their beliefs by Bayes’s Rule. The former does not place any
restrictions on prior beliefs, and this matches the notion of limited observation in a dynamic network setting.
Since players’ information would depend on their limited observation, it is likely that players will not have
common beliefs about the state of the world. Furthermore, not restricting players to use Bayes’s Rule
can allow for di erences in beliefs updating. As such, the Conjectural Equilibrium allows us to find all
equilibrium networks that can arise under any network dynamics and any beliefs updating procedures.
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Remark 2: Any equilibrium under perfect monitoring is also an equilibrium

under x-link observation for any x. Moreover, any equilibrium under x-link

observation, x 1, is also an equilibrium under link observation for all x0 x.

A Nash Equilibrium is a Conjectural Equilibrium with the restriction that i (s ) = 1,

i N . Since x-link observation puts fewer restrictions on equilibrium beliefs than does

Nash equilibrium, the restrictions on beliefs in a Nash Equilibrium still satisfy the weaker

restrictions (in a nested sense) in a Conjectural Equilibrium with a finite x. Essentially, the

“correct beliefs” in a Nash Equilibrium will sustain a network as an equilibrium under limited

observation if players happen upon those correct beliefs. The second part of Remark 2 follows

from similar logic. Fix x > 1 and x0 < x. x0-link observation places fewer restrictions on the

beliefs than does x-link observation, so that even incorrect beliefs under the larger, x-link,

observation must still satisfy the weaker restrictions under the lower, x0-link, observation.

A nice feature of this result is that the e cient Nash networks are still equilibria under

imperfect monitoring. Unfortunately, we have no explanation of how players happen upon

the correct beliefs when they have limited observation. Although players’ beliefs must

correctly reflect what is within their observational range, they might not accurately reflect

what is outside their observational range.

To see this, first note that a cycle of size y is observed by any i in the cycle if y 2x,

and it is not observed by any i in the cycle if y > 2x. It is 2x because i sees out distance

x along two paths, and she sees the cycle if she sees one player in both paths. 1’s cycle in

Figure 2(a) is size 3, but is not observed since 3 > 2x = 2. It is observed in Figure 2(b)

where 3 2 (2) = 4. Not observing a cycle implies that the cycle can exist in equilibrium.

Proposition 3: If x n
2
then any equilibrium network must be minimal, but

if x < n
2
then there always exist equilibrium networks with one or more cycles of

size y = {2x+ 1, 2x+ 2, ..., n}.
Proof: (x n

2
implies any equilibrium is minimal) Suppose an equilibrium

(si , i )i N where s has a y-member cycle, where player i is a member of the cycle,

and without loss of generality, si,i+1 = 1. Consider i in the cycle. From above,

if x y
2
, then player i observes the cycle and i must assign probability zero to

any state without this y-member cycle. According to these beliefs, i is strictly

better o by setting si,i+1 = 0. Thus, (si , i )i N cannot be an equilibrium.
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Since x n
2
implies that any n-player or smaller cycle would be observed, it

follows that no equilibrium can have cycles of size n or smaller. Since n is the

largest possible cycle, it follows that no equilibrium can have cycles.

(Existence of cycle when x < n
2
and y 2x+1) From above, we know that

a cycle is not observed if x < y
2

y > 2x. Because x and y are integers, a cycle

will not be observed if y 2x+ 1.

Consider a connected equilibrium (si , i )i N that has exactly one cycle with

y {2x+ 1, ..., n}members. As above, label the players of the cycled component
1, ..., y, and, without loss of generality, consider player i, si,i+1 = 1. Denote

player zi the player who is exactly x links away from i on the path from i to z

through i+1. By x-link observation, i does not observe the link between zi and

zi+1 because zi+1 is x+1 links away through zi and because zi is at least x+1

links away on the second path from i to zi through i 1.

Consider a connected network structure s0i which is equivalent to s in every

respect except that s0i does not have the link between zi and zi + 1. Because s

has only one cycle, s0 must be minimal. Let i (s
0) = 1 and i (s

00) = 0 for all

s00 S, s 6= s0. Notice that mi (s
0) = mi (s ) and that si is a best response given

i (i believes Ni is connected by Remark 1 and thus will not initiate a new link,

and i believes s0 is minimal and thus will not remove any links).

Construct i in that manner for each member of the cycle. For any i not

in the cycle, set i (s ) = 1. As constructed, no player’s beliefs contradict her

message and each player’s strategy is a best response to her beliefs. Thus, for

any network s such that y {2x+ 1, ..., n}, we can find beliefs i that sustain

s as an equilibrium and that are not contradicted by players’ messages. ¤

Figure 3(a) with x = 1, for example, is an equilibrium, if 1 assigns probability 1 to

Figure 3(b) being the true state and if the other players have similarly constructed beliefs.

The key is that the signal 1 receives in each figure is the same and that her beliefs lead her

to believe she is currently playing a best response. In general, cycles can exist in varying

sizes so long as they are not too small relative to x, and the number of equilibrium cycles

increases as x decreases or as n increases. Figure 3(c), which has overlapping 3-, 4-, and
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5-player cycles, is an equilibrium if with n = 5 if we drop x to 1. Figure 3(d), which has

two cycles, is an equilibrium when holding x = 2 but increasing n to 9.

Ine ciencies can also arise from under-connections. Figure 4(a) with x = 2 can be an

equilibrium if 1 assigns probability
1
7
to each of the networks in Figure 4(b), if the other

players have similar beliefs, and if 6
7
v < c < v. 1’s action is a best response since initiating a

link to any player not in her observational range yields a net expected benefit of 6
7
v c < 0.

I will later discuss why individuals should not expect others to be isolated, but for now this

example illustrates what is necessary and su cient for a disconnected equilibrium. First,

there must be a j Ni who is not observed by i. Second, the expected benefits of making

a link to someone not observed must be su ciently low, so c must be su ciently high.

Proposition 4: If x > n 4
4
, then any equilibrium network is connected. How-

ever, if x n 4
4
and c su ciently high, then there exist disconnected network

equilibria, and each player in a disconnected equilibrium must be in a component

with at least 2x+ 2 players.

I work through the proof here in the text and then discuss the results.

Proof of Proposition 4. Part I–Necessity. Define d (i, j) to be the shortest geodesic

distance between i and j in some s, and let di maxj Ni {d (i, j)} be the distance between i
and that player in her component who is farthest from i. Now define b Ni to be the “best

observer” in Ni, i.e., b is the member of Ni whose di is the smallest. Clearly, if x db then

b observes all ni players in Ni, while if x < db then no player observes all ni members of Ni.

Finally, note that the largest db can be is
ni
2
when ni is even and

ni 1
2
when ni is odd, which

occurs when Ni is a line component. For example, b = 1 and db = 2 in the line network in

with ni = 5 in Figure 3(b), and b = 1 and db = 3 in the line network in Figure 1(d) with

n = 6.

1. ni 2x + 2 is necessary for a disconnected equilibrium. Consider disconnected

equilibrium (si , i )i N , and suppose x db . Since x db , b observes ni players in Ni. By

Remark 1, b (s
0) = 0 for any state s0 in which any j / Ni is a member of Ni. According to

b , player b believes that linking to some j / Ni would not be a redundant with probability

one, thus yielding a net utility increase of at least v c > 0. Because b believes she is

strictly better o making this link, (si , i )i N cannot be an equilibrium. Thus, x < db is

necessary for a disconnected equilibrium.
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When ni is even, db
ni
2
(from above), so when ni is even, it follows that x <

ni
2
is

necessary for a disconnected equilibrium. Since ni is an integer, the necessary condition

becomes x ni 2
2
for even ni. For ni odd, x <

ni 1
2
is necessary by similar logic, which

becomes x ni 3
2
. These two weak inequalities become x ni 2

2
for generic ni, which

yields ni 2x+ 2 as a necessary condition for any disconnected equilibrium component.

2. x n 4
4
is necessary for a disconnected equilibrium. Since no player can be isolated

in equilibrium, it follows that any disconnected equilibrium s will have at least two compo-

nents, each of size at least 2x + 2. Hence, in any disconnected equilibrium it is necessary

that n 2 (2x+ 2) x n 4
4
, and any equilibrium with x > n 4

4
must be connected.

Part II–Su ciency. To show the existence of a disconnected network equilibrium when

x n 4
4
, I construct a (si , i )i N combination and show that it is an equilibrium when c is

su ciently high. From Remark 2, an equilibrium network under x = n 4
4
will also be an

equilibrium network under any other x < n 4
4
. Thus, we need only show existence when x

equals the maximum integer less than or equal to n 4
4
.

1. Construct structure. If n is even, partition N into two sets of players N1 and Nn,

such that N1 =
©
1, ..., n

2

ª
and Nn =

©
n
2
+ 1, ..., n

ª
. Then construct seven so that N1 and Nn

comprise two separate line components such that

seven =

s12 = s23 = ... = sn
2
1,n
2
= 1

sn
2
+1,n

2
+2 = sn

2
+2,n

2
+3... = sn 1,n = 1

all other sij = 0 for all i, j N

.

Note that n1 = n2 =
n
2
. If n is odd, partition N into two sets of players N1 and Nn, such

that N1 =
©
1, ..., n 1

2

ª
and Nn =

©
n 1
2
+ 1, ..., n

ª
. Then construct sodd so that N1 and

Nn comprise two separate line components similar to when n is even, the di erence being

n1 =
n 1
2
and nn =

n+1
2
.

2. x n 4
4
is su cient for Ki > 0 for all i. Consider s constructed immediately

above (either seven or sodd, whichever is appropriate given n). For i Ni, denote Oi to be

set of players observed by i with oi equal to the number of players in that set; let Oi = N/Oi

be the compliment of Oi, with oi the number in that set, and let Ki = ni oi be the number

of players in ni that are not observed.

Given the constructed s for some n, the best observer b will be the middle agent in the

line network. Note that b will not observe all members of her component with x n 4
4
.
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Since b Nb observes ob members out of nb, and since b knows there are nb members of

Nb (Result 1), then b knows that there are exactly Kb > 0 players in Nb that she does not

observe. Moreover, since b is the best observer, it must be true that Ki > 0 for each i Nb.

3. Construct i . Consider the following state s0: (1) s0 is exactly equal to s within

i’s observational range; (2) exactly Ki players from Oi each initiate a link to some player

j Ni who is exactly x links from i; (3) all other players in Oi are isolated. By x-link

observation, the links between the Ki players and j are not observed. Let bSi denote the set
of all such possible s0 structures, and note that there are

¡
oi
Ki

¢
of them in bSi. Let

i (s
0) =

(
1

( oiKi)
for each s0 bSi

0 for any other s0 in S

As constructed, these beliefs sum to 1. Also note that, according to i ,

Pr
£
j Ni|j Oi

¤
=

¡
oi 1
Ki 1

¢¡
oi
Ki

¢ j Oi and

Pr
£
j / Ni|j Oi

¤
= 1

¡
oi 1
Ki 1

¢¡
oi
Ki

¢ j Oi.

The first probability is the probability that linking to j is redundant, and the second prob-

ability is that of making a non-redundant link.

4. si is i’s best response given i if c is su ciently high. For si to a best response for

i, i must be no better o removing or initiating links. According to i , none of i’s links are

redundant, so i believes she is strictly worse o removing any links. Consider adding links.

Clearly, i believes she is strictly worse o by adding a link to any i Ob because such a link

would be redundant, so consider adding a link to j Oj. Given i , i’s expected net utility

gain from initiating new links to y oi members of Oi is

yX
t=1

ÃÃ
1

¡
oi 1
Ki 1

¢¡
oi
Ki

¢ ! v c

!
which is less than 0 if

c >

Ã
1

¡
oi 1
Ki 1

¢¡
oi
Ki

¢ ! v ci .

Thus, if c > ci , then i will not initiate any new links. Notice that ci < v. Hence, if c is

su ciently high then si is a best response for i given i .
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5. (si , i )i N is an equilibrium. We can construct i as above for every i in both

N1 and Nn. Define c = maxi N {ci }. If c > c , then si will be each i’s best response.

Moreover, each i was constructed so that mi (s ) = mi (s
0) for all s0 bSi. Thus, we have

met all conditions for (si , i )i N to be an equilibrium. ¤

Propositions 3 and 4 consider over- and under-connections separately, but equilibria can

be both over- and under-connected. Combining Propositions 3 and 4 we see that x n
2

is su cient for e ciency; that over-connected equilibria exist when x
¡
n 4
4
, n
2

¢
; and

that equilibria that are simultaneously over- and under-connected exist when x n 4
4
.

Limited observation thus threatens the e cient functioning of networks. Moreover, the

ine ciencies get worse as x decreases, as seen by the relative e ciency losses for over- and

under-connections. For example, the sum of utilities in Figure 5 increase as we move from

(a) to (d): 72v 12c, 72v 10c, 144v 13c, 144v 11c. The worst ine ciencies arise

from under-connections in this model, which follows from v being greater than c and from

the positive externalities generated by links.

Imperfect monitoring leads to ine cient equilibria because it allows players to maintain

incorrect beliefs about the network. First, players can be sure (or nearly sure) but wrong

in assigning probability 1 (or close to 1) to states that are e cient but not the true state.

This occurs in Figure 3(a), where each player incorrectly assigns probability 1 to a minimally

connected network, when in truth it is connected but not minimal. Because players believe

the network is e cient, they have no incentive to identify and eliminate ine ciencies. In

essence, the imperfect monitoring does not prevent misplaced overconfidence. Second,

players can correctly believe that the network is not e cient but have beliefs spread over a

range of possible states so that any single action is more likely to do harm than good. This

occurs in Figure 4(a), where each player knows the network is disconnected, but no player

knows exactly who is and is not outside of her own component. If a player was more sure of

the state, even incorrectly sure, then the network would not be an equilibrium because the

player would risk initiating a new link. In this instance, the imperfect monitoring essentially

leads to underconfidence or too much uncertainty in beliefs.

Note that these ine ciencies can arise more generally in various network formation mod-

els. If imperfect monitoring makes it di cult for players to accurately distinguish the true

state from other states then players can sustain incorrect beliefs and not take actions to
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remove ine ciencies. If the true state is nearly e cient, then Pareto improvements may be

missed due to players’ misplaced overconfidence. If the true state is far from e cient but

no player has enough confidence that any single given action is Pareto improving, then the

wide uncertainty can lead to very ine cient equilibria.

5 Su cient Restrictions for E ciency

Increasing x eliminates ine cient equilibria, but might other restrictions eliminate ine cien-

cies while holding x fixed? First consider restricting players’ actions by ruling out equilibria

in which at least one player has multiple best responses, i.e., consider only strict equilibria.14

Much prior work uses this restriction because it greatly refines the set of equilibria (e.g., Bala

and Goyal [1], Galeotti, Goyal, and Kamphorst [19]). It also has a pertinent dynamic inter-

pretation. Network models are often motivated by dynamic network formation, and strict

equilibria are absorbing states under many dynamic processes.15 We thus might expect to

see a higher proportion of strict equilibria than weak equilibria in actual social networks.

Bala and Goyal [1] show that in this model with full information the set of strict equilibria

is the set of connected, center-sponsored stars, each of which is e cient. A center-sponsored

star is a component such as Figure 1(e) in which all links are initiated by a single player

called the center. Full information is not necessary for this result, however.

Proposition 5: If x 2, then the set of strict network equilibria is the set of

connected, center-sponsored stars.

Proof: (Ni that is not a center-sponsored star cannot be a strict equilibrium

component) Consider component Ni in a strict equilibrium network s , where

Ni is not a center-sponsored star. By the definition of a center-sponsored star,

Ni must have at least two players i, j Ni who initiate links.

If ni = 2, then it must be true that sij = sji = 1, and the direct redundant

link can be identified and profitably removed under full observation, thus con-

14A strict Nash Equilibrium would have ui
¡
si , s i

¢
> ui

¡
s0i, s i

¢
for all si Si, for all i. A strict

Conjectural Equilibrium would similarly have “>” instead of “ ” in condition (i) of the definition.
15Consider a repeated game of network formation with full information where links are formed in each

period. Suppose players are in a non-strict equilibrium in period t. If, given the structure in t, a player has
multiple best responses and randomizes among them in period t+ 1, then the resulting structure in period
t+ 1 will di er from that in period t. In a strict equilibrium, no player makes these changes.
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tradicting the equilibrium. Now suppose ni > 2. Since i, j Ni, there must be

a path between them. If they are directly connected and their only links are to

each other, then there must be a direct redundant link, which, again, cannot be

an equilibrium. If they are directly connected and there is no direct redundant

link between them, then, without loss of generality, it must be that sij = 1 and

sjk = 1 for some k Ni, k 6= i. With x 2, i identifies the link between j

and k and knows she can set sij = 0 and sik = 1 without a decrease in utility.

This violates the definition of a strict equilibrium. Now suppose that i and j

are not directly connected. Then there must be a player k in the path between

i and j. Without loss of generality, let sik = 1. Then there must be some

player l (who can be j) such that max {skl, slk} = 1. With x 2, i can observe

the link between k and l and set sik = 0 and sil = 1 without a drop in utility,

which violates the definition of strict equilibrium. All possible cases have been

considered, so Ni cannot be in a equilibrium component.

(A disconnected network cannot be a strict equilibrium) Suppose discon-

nected equilibrium (s , ). There must be a component Ni N in s that is a

center-sponsored star. Let i be the star’s center. Since Ni is a star, i observes

all j Ni with x 2. i’s beliefs must thus correctly reflect exactly which players

are not in Ni. According to these beliefs, i is strictly better o connecting to

any j / Ni, so s cannot be an equilibrium.

(Su ciency) Follows from Proposition 2 since a minimally connected net-

work combined with correct beliefs for everyone is a strict equilibrium. ¤

The argument relies on a link initiator being able to observe her neighbor’s links to know

a link switching opportunity. If one link initiator observes a neighbor’s link, which requires

only with x 2, then she can switch her link from her neighbor to her neighbor’s neighbor

and be no worse o . Only the center-sponsored star is immune to the this link switching.

The striking aspect of this result is that only 2-link observation is su cient for e ciency.

How do we interpret this? Since strict equilibria are absorbing states of many dynamic

processes, one implication is that we can find explicit network dynamics that always converge

to an e cient equilibrium even when players have very low link observation. Another striking

feature is that star networks have special monitoring properties. At least one individual,
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the star’s center, knows the component’s true structure, and this fact ensures a connected

equilibrium. And since the peripheral players are at most two links from one another, they

know that the network is connected and thus will not initiate any new links which would be

redundant. These informational properties are enough to ensure e ciency.

The strictness condition restricts players’ actions, but we can also restrict players’ be-

liefs. The common knowledge of rationality assumption restricts players to rationalize their

beliefs.16 If i knows j’s utility function and that j seeks to maximize her payo , then i

must believe j will choose a best response to her beliefs j. Moreover, j must correspond,

in equilibrium, to j’s message mj and must assume that other players are also playing best

responses, and so on. This assumption has immediate implications for connectedness.

Proposition 6: Any rationalizable equilibrium is connected for any x.

In using Figure 4(a) to illustrate the existence of disconnected networks, player 1 believed

that any player not in her component was isolated. However, no rational player will be

isolated, so if players are commonly known to be rational then no player, in equilibrium, can

assign non-zero probability to a network in which another player is isolated. This will raise

1’s expected marginal value of making a non-redundant link, and thus increase the likelihood

she initiates a new link. Proposition 6 follows from extending this basic logic.

Proof of Proposition 6. Denote Pr [j / Ni| i]
P

s S [ i (s) I (j / Ni|s)], where I (·)
is the indicator function that takes value 1 when the argument is true. Further define

Zi {j N |Pr [j / Ni| i] > 0}, zi to be the number of players in that set, and l to be the
member of Zi for whom the probability of not being in Ni is the highest:

l

½
k Xi|max

j Xi
Pr [j / Ni| i]

¾
.

1. Pr [l / Ni| i ]
n ni
zi
in any disconnected equilibrium. Consider equilibrium (si , i )i N .

By definition X
j Zi

Pr [j / Ni| i ]
X
j Zi

X
s S

[ i (s) I (j / Ni|s)]

=
X
s S

X
j Zi

[ i (s) I (j / Ni|s)] .

16See Fudenberg and Tirole [18] for exented discussion of common knowledge of rationality and rational-
izable strategies.
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By Remark 1, i knows that her component has exactly ni members. As such, in any

equilibrium, each state s for which i (s) > 0 must have exactly n ni players not in Ni. It

follows that X
s S

X
j Zi

[ i (s) I (j / Ni|s)] =
X
s S

[ i (s) (n ni)]

=

ÃX
s S

i (s)

!
(n ni) = n ni.

Now suppose Pr [l / Ni| i ] <
n ni
zi
. Then, since l has the highest probability of not being

in Ni, it must be true that
P

j Zi
Pr [j / Ni| i ] <

³
n ni
zi

´
zi. But this violates the fact that

the probabilities must sum to n ni as shown. Thus, it must be true that Pr [l / Ni| i ]
n ni
zi

in any disconnected equilibrium.

2. In a disconnected equilibrium, i must believe with non-zero probability that there exists

nj < ni. Suppose a disconnected equilibrium (si , i )i N with distinct components Ni and

Nj, and suppose i (s) = 0 for any s S in which ni < nj. Consider i’s choice to link to l.

Since Pr [l / Ni| i ]
n ni
zi
, and since i says nj ni, the marginal value of a non-redundant

link is weakly greater than niv c. Thus, i’s believed net gain from linking to l is at least
n ni
zi
niv c.

With n ni + nj, nj ni, and n zi, it follows that
n ni
zi

1
2
. Combining this with

ni 2x+2 from Proposition 4 yields n ni
zi
niv c 1

2
(2x+ 2) v c, which is strictly positive

for all x 1 since v > c. Thus, according to i , i must believe she is strictly better o in

expectation by linking to l, which contradicts the assumption of equilibrium. Hence, it is

necessary that i must believe with non-zero probability that there exists a component with

fewer players than her own component.

3. A rationalizable network must be connected. Consider disconnected equilibrium

(si , i )i N . From above, there must exist some state s
0 with component of size nj < ni such

that i (s
0) > 0. However, to rationalize s0, player j Nj in state s

0 must assign non-zero

probability to the existence of a component nk < nj, say in some state s
00, and this state

can also only be rationalized by j if k rationalizes the existence of an even strictly smaller

component, and so on, until some player z in some state s000 must rationalize a state of the

world in which a player is isolated, which cannot be rationalized. Hence, i cannot rationalize

the existence of a network with a component strictly smaller than her own.
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If player i cannot rationalize the existence of any component strictly smaller than her

own, and any disconnected network in which i believes any component is bigger than her

own will lead her to form connections, then the only possible rationalizable networks are

connected. The proof has not used any specific x, so this holds for all x. ¤

That rationalizability ensures connected equilibria is significant since the largest ine -

ciencies arise from under-connections. However, connected but non-minimal networks can

be rationalized if players do not observe the cycles, so rationalizability does not ensure an

e cient network. I now propose a restriction, called flow identification, that is new to the

literature and that ensures no over-connections.

Definition: A network game hSi, ui,miii N has flow identification when

each player knows for each of her links what her final utility would be if all of her

links but that particular link were removed, and each player knows for any two

of her links what her final utility would be if all of her links but those two were

removed.

The name signifies that players identify, in essence, the marginal “utility flow” of each

link. In state s with i, j Ni, let ui|j be i’s utility if all i’s links (whether initiated by i

or by j) were removed except her link with j, holding all other links fixed. Let ui|jk be

i’s utility if all i’s links were removed except her links with j and k (again, holding all else

fixed). Under flow identification after the simultaneous link choices are made, each i knows

ui|j and ui|jk for all j, k Ni. It follows that since i knows Ii, v, and c, i will thus know ni|j

and ni|jk, which are the corresponding component sizes.

Knowing both ni|j and ni|jk has an important implication: ni|j < ni|jk signifies that the

link with k is not redundant, but if ni|j = ni|jk then the link with k is redundant.17 This is the

case in Figure 5(a) where flow identification reveals to player 1 that n1|2 = n1|6 = n1|26 = 6.

Equilibrium beliefs must reflect this fact, which means that any network with cycles cannot

be an equilibrium. Proposition 7 summarizes this result.

Proposition 7: Any flow identification equilibrium has no cycles for any x.

17Note that ni|j ni|jk since the addition of the k link can only increase i’s component.
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Why would flow identification exist? One possibility is that flow identification follows

from a more primitive assumption about the nature of the good that flows through the

network. For example, communication networks transmit information, and if 1 learns the

same information from two of her neighbors, she may infer the presence of a cycle. While

this example does not relate directly to knowledge of utility as defined by flow identification,

it has a similar implication in that it results in redundant links being identified.

Since flow identification brings minimality and common knowledge of rationality brings

connectedness, the combination of the two ensures an e cient equilibrium. Remarkably, we

ensure an e cient outcome by restricting beliefs and without increasing observational capa-

bilities. Furthermore, flow identification and common knowledge of rationality approximate

some features of actual networks. Overlaps in communicated facts will signal to individuals

that a link could be redundant, and flow identification can be present in dynamic network

environments with the temporary elimination and re-addition of individual links. As for

believing other individuals are rational, I note that informal social networks often connect

individuals like friends, family, and co-workers with whom there is some degree of interaction,

and this suggests that individuals are aware to some degree of other network participants’

motives, incentives, and thought-processes.

The main implication of these results is that potential ine ciencies arising from limited

observation are less likely to arise if the network has link-switching, qualitatively distinctive

information flows, and knowledge of other players’ rationality. Each of these restrictions

works in a di erent way to eliminate the potential for ine ciencies. Common knowledge

of rationality allows players to identify some networks as not being consistent with rational

behavior, thereby allowing them to assign probability 0 to states they otherwise could not

have ruled out. Flow identification directly reveals more information about the state, thus

allowing players to better distinguish one state from another. The strictness refinement

works quite di erently. Since center-sponsored stars are the only strictly stable compo-

nents, any equilibrium must have the center of the star know the component with certainty

(assuming x 2), thereby leading the center to know of utility improving changes.
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6 Other Considerations

Two variations deserve brief mention. If v < c then the equilibria can change dramatically,

although much of the intuition remains the same. The empty network (in which all players

are isolated) is an equilibrium under both full observation or any x-link observation, and, if

v < c
n 1
, it is the only equilibrium. The empty network is also rationalizable since players

can rationalize being isolated. Furthermore, while center-sponsored stars are immune to

switching, they cannot be equilibria when v < c because each link’s marginal utility is less

than its cost. Thus, the only strict equilibrium is empty.

A second variation is flow decay whereby facts lose value as they travel through the

network. Suppose the utility function is now ui =
d(i,j)v Iic, where [0, 1] is the

decay parameter and d (i, j) is the shortest path distance in links between i and j. Over-

connections that arise ine ciently in Sections 3, 4, and 5 with no decay ( = 1) can now be

e cient with flow decay ( < 1) since players would rather get facts from closer to the source.

In fact, if is su ciently low then the set of equilibria is the same no matter what level of

monitoring is present. If v c > v c < (1 ) v then i prefers initiating a new direct

link to j (holding all other links fixed) even if j is only two links away (and, of course, if j is

more than two links away). Thus, no matter her other links, she always prefers a directly

link to j. Her best response is to set sij = 1 for any j where sji = 0 and sij = 0 otherwise.

Hence, for any x 1, the set of equilibria is the set of “complete” networks (without direct

redundant links), and these are e cient so that even extreme imperfect monitoring does not

a ect e ciency. The results are more complicated with close to but strictly less than 1.

I note that the strictness condition can lose refining power. A player will switch links if

it brings her closer to other players, and she will know of such opportunities under perfect

monitoring, but under imperfect monitoring, she might be unsure of which switch is a proper

one. Star networks will no longer be the only strict equilibria.

7 Conclusion

This paper shows that limited observation of others’ network relationships can lead to inef-

ficient outcomes, and that these ine ciencies can be economically significant. Nonetheless,

certain restrictions on players’ actions or beliefs–ones that can arise naturally in some net-
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work settings–will eliminate some of these ine ciencies. The main implication of this

finding is that many actual communication networks can disseminate information reason-

ably well despite limited observation. Situations with frequent link switching, common

knowledge of motives and incentives, flow identification, and highly valued facts are more

likely to avoid ine ciencies generated by imperfect monitoring. Settings with large flow

decay should also avoid these ine ciencies.

Future research has many avenues to consider. The coincidence of flow decay and

imperfect monitoring deserves further study. Researchers should also look for mechanisms

that can overcome ine ciencies associated with limited information. Since incorrect beliefs

can cause ine cient outcomes, researchers should also examine the source of individuals’

beliefs about parts of the network they cannot observe. Other work should study the

sources of persistent instabilities in networks. My work demonstrates that link switching

is one type of instability that can possibly aid in the formation of e cient networks, and

empirical work can seek to test this prediction. Previous empirical work does not directly

address the role limited observation plays in network formation, but such work will ultimately

lend greater insights into the evolution of economically significant social relationships.
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