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Abstract 

This paper studies the effects of tolling road use on a parallel network when different governments have 

tolling authority on the different links of the network. The paper analyses the tax competition between 
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welfare gain. Nash equilibrium toll discrimination between local and transit traffic generates slightly higher 

welfare than the solution where both tolls have to be uniform. 
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1. Introduction 

Countries’ road networks are usually publicly provided, they are congestible, and they are 

accessible to local and to transit users.  Local users are those for which both costs and 

benefits of network usage matter for country welfare.  Transit users typically contribute 

to local costs (congestion, pollution, etc.) but not to local benefits. Importantly, in a 

number of cases transit users have a choice between different jurisdictions’ road 

networks. For example, there are two main routes from South-Central Europe 

(Switzerland, Austria, Italy) to the north (Belgium, Netherlands, Denmark, etc.), one 

through France, the other via Germany.  Alternatively, consider the transalpine crossing 

between Germany and Italy, where Austria and Switzerland compete for transit traffic. In 

both cases transit has a choice of routes and it interacts with local traffic in each country.   

In these circumstances, how would a local jurisdiction like to regulate access to its 

infrastructure?1  If the jurisdiction has taxing power and when it cares more about local 

than about overall welfare, it has two incentives for introducing tolls, even if there is no 

revenue requirement as such.  First, there is scope for efficiency-improving tolls, because 

individual users ignore their contribution to external costs such as congestion.  Second, 

there is scope for tax exporting, by raising revenue from transit users and redistributing it 

to local voters. The purpose of this paper is to study the interaction between those 

incentives, under various assumptions on the type of allowable tolls, for given levels of 

infrastructure supply. More specifically, we look at a model with two parallel routes that 

are operated by two countries. Local traffic and transit traffic both contribute to 

congestion, and the two countries compete for revenue from transit. Assuming that 

countries maximise local welfare, consisting of local consumer surplus and tax revenues 

from local and transit traffic, we study strategic tolling by both countries under various 

conditions. First, we assume that local traffic and transit can be separately tolled and 

analyse the resulting Nash equilibrium tolling policies. Second, we look at the case where 

                                                 

1 Although the discussion is set in the context of congestible road infrastructure in two countries, similar 
issues arise in the public provision of e.g. health, educational and recreational services.  In this sense, the 
ideas studied in this paper are not limited to the transport sector. The key feature of the analysis is that 
foreign (transit) users are not restricted to a particular jurisdiction but can choose between several, and that 
jurisdictions compete for revenue from transit.  
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only uniform tolls are possible or acceptable.  Third, we consider the case where only 

local traffic can be tolled. 

Despite the highly stylised setting, the examples refered to above show that the model 

does capture the main ingredients of a number of situations in Europe (North-South axe, 

transalpine crossing, etc.) and, potentially, the US where States may compete in the near 

future. The analysis of this paper then describes the potential tax competition between 

countries (France and Germany, Switzerland and Austria, etc.) or regions, in controlling 

local and transit transport through the use of taxes on both types of transport.  All three 

types of tolling regimes considered may be relevant in this context. Toll differentiation is 

especially relevant if countries use different pricing instruments to control local and 

transit transport. The case of uniform tolls applies when the same instruments are used 

and toll differentiation is not allowed by, say, a federal government (as can be expected 

when both countries are members of the EU).  The case of ‘local tolls only’ resembles the 

current situation, where fuel taxes and other taxes on car use are the main tolling 

instruments. High fuel taxes can easily be evaded by transit transport, especially in 

relatively small countries, so that the exclusive use of fuel taxes is similar to tolling local 

traffic only. 

Given recent innovations in transport taxation within the EU, the analysis directly bears 

on current policy issues.  New forms of transport taxes take the form of kilometre charges 

(implemented in Germany as of early 2003), tolls (already existing, amongst others, on 

French motorways), or of sophisticated time-of-day pricing.  The idea of (no) tax 

differentiation and of tolling only part of the users then is highly relevant.  On the one 

hand, the EU principle of fair and efficient transport pricing suggests that each user pays 

for the marginal costs imposed.  On the other hand, the use of different instruments by 

Member States almost automatically implies that local and transit transport taxes will 

differ.  At the same time, it is likely that some countries will start off by tolling local 

traffic only, if only because of the technical difficulties of tolling transit traffic. Against 

this background, the problem for each national government is to choose the best strategy.  

Should fuel prices be used (local tolls only), or are general tolls preferable; should tolls 
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be uniform or differentiated? At the EU government level, there are parallel questions. 

Is toll harmonization required? How large are the welfare costs of tax competition and tax 

exporting behaviour? Our analysis sheds some light on these issues. 

Although the specific topic of this paper has not been studied before, several strands of 

the economics literature are directly relevant. First, the tax competition literature studies 

the behaviour of individual jurisdictions in a multi-jurisdictional setting. The seminal 

paper by Mintz and Tulkens (1986) provides detailed descriptions of equilibrium 

concepts for tax competition between regions within a federal state, using a model that 

incorporates the provision and financing of public goods.  The implications of 

asymmetries in country size for countries’ strategic behaviour have been studied by 

Kanbur and Keen (1993) within the framework of a model with cross-border-shopping. 

Assuming that the objective of the country governments is to maximise revenues, they 

show that, under some plausible conditions, the optimal strategy for small countries is to 

undercut the price of the neighbouring country, and that a small country typically looses 

from tax harmonisation.  More recently, Parry (2003) empirically illustrates the welfare 

effects of tax competition and finds them to be relatively small under some, but not all, 

scenarios. Finally, Sinn (2003) discusses various forms of ‘systems competition’, 

referring in general to competition between countries for mobile factors, e.g. within the 

EU or on a global scale.  He finds the welfare effects to be detrimental in some, but not 

all, cases.   

Second, the literature on the optimal pricing of road use in the presence of congestion 

has recently been extended to optimal tolling in simple parallel networks. For example, 

Verhoef et al. (1996), Braid (1996) and Liu and McDonald (1998) consider models with 

homogeneous users and a speed-flow representation of congestion. They study optimal 

second-best tolls on one link in the network, assuming that other links can not be 

optimally tolled for technical or political reasons. Both theoretical and empirical results 

suggest that the optimal second-best tolls on one link tend to be low, and could actually 

be negative.  The welfare gains from this type of second-best tolls are low. However, 

more recent research shows that the results strongly depend on the assumption of 

homogenous road users. Small and Yan (2001) and Verhoef and Small (2003) allow for a 
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heterogeneous population of road users, and find comparatively large benefits from 

second best tolls.   

Third, a small but growing literature studies the role of different ownership regimes in 

models with parallel routes. For example, Verhoef et al. (1996) consider competition 

between a private road and a free-access road, and compare the second-best optimal tolls 

with those obtained when both roads are privately owned.  De Palma and Lindsay (2000) 

use a bottleneck model of congestion and compare three types of ownership structure: a 

private road competing with a free access road, two competing private roads, and 

competition between a private and a public operator.  Interestingly, they show that a 

private duopoly can be more efficient than a mixed private-public duopoly.  

Finally, a few recent studies have looked specifically at tax exporting in the transport 

sector, within a serial network setting2.  Levinson (2001) analyses US States’ choice of 

instruments for financing transportation infrastructure.  Theory predicts, and an 

econometric analysis confirms, that jurisdictions are more likely to opt for toll-financing 

instead of e.g. fuel taxes, when the share of non-residential users is large.  Tolls become 

more attractive because they allow price discrimination and tax-exporting.  De Borger et 

al (2003) apply a large-scale numerical optimisation model to study tax exporting 

behaviour by individual regions in a model with both domestic and international freight 

transport.  Numerical illustrations of different Nash equilibria suggest that (of course) the 

Nash equilibrium produces lower welfare than the centralized optimum, but that the 

Nash-equilibrium performs much better than the reference equilibrium, in which 

externalities are not reflected in prices. 

At the theoretical level, our analysis fills two gaps in the literature. First, although 

competition between operators has been considered before, a common feature of this 

work is the absence of transit users that can choose between routes. In contrast, our 

analysis incorporates route choice for transit, and it focuses on the interaction between 

local and transit traffic when governments compete for revenue from transit. The 

                                                 

2 For an early influential contribution on tax exporting by local governments, see Arnott and Grieson 
(1981).     
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distinction between local and transit traffic also allows us to explicitly consider a wider 

range of tolling instruments and to look at the implications of pricing only part of the 

users (for example, only local traffic). Second, our analysis focuses on competition in a 

parallel network between two local welfare-maximising governments. This type of 

competition seems highly relevant in the context of transport policy and has not been 

studied in detail in the literature, as governments have other preferences than private 

operators.  

The theoretical analysis is complemented by a numerical illustration, based on a stylised 

dataset, allowing us to pin down orders of magnitude for the various effects. What 

happens to pricing of local trips, transport volumes and welfare when transit traffic can 

be charged differently from local traffic? What are the welfare effects of tax exporting 

and tax competition in this case? What are the implications for taxes and welfare of tax 

harmonisation and of taxing local transport only?  How sensitive are the results to 

country size and transit shares? Among others, the numerical results suggest that despite 

a substantial amount of tax exporting, the efficiency costs of tax exporting are fairly 

small under most scenarios. Also, tax harmonization (uniform tolls) has a limited effect 

on overall welfare.  To the contrary, allowing local tolls only (the current situation) is 

quite costly in welfare terms. 

The structure of the paper is as follows. Section 2 presents the general theoretical 

model. We specify the characteristics of the network and derive optimal tax rules for a 

given country (implicitly defining the country’s reaction functions) under three sets of 

assumptions on the policy instruments: differentiated tolls on local and transit transport, 

uniform tolls on local and transit traffic, and the case where only tolls on local transport 

are used. In Section 3 we simplify by assuming linear demand and cost functions; this 

allows us to explicitly analyse the properties of the reaction functions, as well as the 

resulting Nash equilibrium for each of the three cases.  Mathematical details for sections 

2 and 3 can be found in the appendices.  Section 4 reports on a numerical illustration. 

Seven equilibria are numerically evaluated: the no-toll equilibrium, Nash with 

differentiated tolls, Nash with uniform tolls, Nash with local tolls only, a centralised 
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solution with differentiated tolls, a centralised solution with local tolls only and, finally, 

a scenario with collusion between the countries. The role of the share of transit and of 

demand and cost asymmetries between countries is evaluated.  Section 5 concludes. 

 

2. The theoretical model 

In this section we study optimal tolls on local and transit traffic in a simple parallel 

network. We first present the structure of the model and provide an overview of the 

tolling systems analysed. We then study the optimal behaviour of an individual country 

for each of the three tolling systems considered. Throughout this section we focus on the 

economically most relevant steps; the derivations are relegated to appendices. 

 

2.1 Structure of the model and the pricing schemes considered 

We consider the simplest possible setup for the analysis of tax competition between 

governments in a parallel network. The network analysed is depicted in Figure 1. It 

consists of two parallel links, and it is assumed that pricing of each link is the 

responsibility of a different government. Each link carries local traffic, which cannot 

change routes, and transit traffic, which can. Link capacities are given and both links are 

congestible. 

Both governments are assumed to maximise a welfare function that reflects two 

concerns, viz. (i) the travel conditions of its local users and the associated welfare, and 

(ii) total tax revenues on the link it controls. We assume that all traffic flows are 

uniformly distributed over time and are equal in both directions, allowing us to focus on 

one representative unit period and one direction.  
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Figure 1 The network 

Country A

Country B

 

The combinations of tolling instruments that we study are summarised in Table 1. The 

first case is that of full discrimination between local and transit traffic: each government 

(denoted by A and B) uses taxes on local users (tA and tB , respectively) and on transit 

traffic (τA  and τB ). In the second case discrimination between transit and local traffic is 

ruled out. In the third case, each government can tax local but not transit traffic. Note that 

the first case with discrimination may seem unrealistic because it runs against the non-

discrimination rules in trade agreements. However, by choosing a particular toll structure, 

countries are able to price-discriminate against foreign users. Take as an example the 

yearly lump-sum fee for access to a country’s network that is to be paid in Switzerland 

and in many other countries (the Eurovignette system): this in fact boils down to 

discrimination in favour of the local users as, almost by definition, they use the network 

more frequently. The third case can be seen as the situation where transit traffic can 

easily evade tolls or taxes; an example is a high fuel tax that can be evaded by transit 

traffic by fuelling abroad.  

Table 1 only lists the three cases where both countries use the same type of tolling. In 

principle, we could also examine cases where the governments use different types of 

tolling systems. Indeed, these mixed cases exist in reality: France uses a uniform tolling 

system for motorways while Germany has no explicit toll, so uses a system similar to the 



 8

case where only local traffic can be tolled. However, we focus on countries using the 

same instruments.  

Table 1: The tolling systems studied 

Description of tolling systems 
studied 

Tolling instruments  Example of practical relevance 

Differentiated tolls for local and 
transit transport  iτ : transit toll region i 

(i=A,B) 

it : toll on local transport in 
region i (i=A,B) 

Eurovignette (favors more intensive 
local users) 

Uniform tolls for local and transit 
transport iθ : uniform toll in region i 

(i=A,B)  

Current tolls on French highways 

Tolls on local users only, no transit 
toll it : toll on local transport in 

region i (i=A,B) 

Fuel taxes, parking charges 

 

Turning to the specification of the model, demand for local transport in A and B is 

represented by the strictly downward sloping inverse demand functions  and 

, respectively, where Y  and Y  are the local flows on both links. The generalised 

prices  include resource costs, time costs and tax payments or user charges. 

Similarly, overall demand for transit traffic is described by the strictly downward sloping 

inverse demand function , where X is the total transit traffic flow. By definition 

we must have 

( )Y
A AP Y

(Y
B BP Y ) A

(X

B

(.)j
iP

)P X

A BX X X+ = ,                                                                           (1) 

where AX  and BX are the transit flows via A and B, respectively.  The two links are 

assumed to be perfect substitutes: transit users choose the route with the lowest 

generalised (money plus time) cost but have no specific preferences towards any of the 

routes.    

Demand for the different types of transport on both links is specified as a function of the 

corresponding generalised costs. In what follows, we develop all specifications for the 

case of differentiated tolling; the cases of uniform tolls and local tolls only are easily 

derived by analogy. For example, the generalised user cost for transit via route A, denoted 

, equals the sum of the time and resource costs of travel plus the transit toll on A :  X
Ag
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 ( )X
A A A Ag C X Y τ= + + A  

 In this expression, C  is the time plus resource cost on route A; it obviously depends 

on both transit and local use of link A and we assume it is strictly increasing in the traffic 

volume. Similarly, the generalised user cost for local use of route A is given by 

(.)A

  ( )Y
A A A Ag C X Y t= + A+

B

B+

 

User costs for route B are defined in an analogous way: 

( )X
B B B Bg C X Y τ= + +  

( )Y
B B B Bg C X Y t= +  

Importantly, since we assume perfect substitutability between links for transit, in 

equilibrium the generalised cost for transit equals the generalised cost on the link with the 

lowest generalised cost.  If both routes are used, transit traffic will be distributed across 

links so as to equalise generalised costs. Specifically, the Wardrop principle implies that  

                                                 (2) 
( ) ( ) 0

( ) ( ) 0

X X
A A A A A A

X X
B B B B B B

P X g C X Y iff X

P X g C X Y iff X

τ
τ

= = + + >

= = + + >

Moreover, equilibrium for local traffic implies 

( ) ( )Y Y
A A A A A AP Y g C X Y t= = + + A               (3) 

( ) ( )Y Y
B B B B B B BP Y g C X Y t= = + +               (4) 

In this paper we mainly focus on the case where all types of traffic exist in equilibrium, 

i.e., there is local and at least some transit in both countries. In theory, of course, this is 

just one of the many possibilities that exist in this model. When certain taxes are too high 

or there is too much other traffic using the same road, some types of transport demand 

may disappear, and this affects the structure of the remaining demand functions. This is a 

well-known problem in the tax competition literature (see Mintz and Tulkens, 1986). In 

fact, a complete analysis would have to distinguish 16 different regimes. Many of these, 

however, are not very interesting in practice (e.g., cases where there is no local traffic, 

cases where there is no transit in neither A or B). We therefore largely focus on the most 
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relevant case where both types of transport exist in both countries, although we briefly 

touch upon the case with zero transit where appropriate. 

 

2.2. Optimal tolls in a parallel network: the case of differentiated tolls 

Let us consider the optimal behaviour of one of the countries, say A, assuming it can set 

different tolls on local transport and on transit. To do so, we first express local and transit 

demands in A as a function of all tax rates (the reduced-form demand functions), and then 

use this information in the first-order conditions describing optimal transport taxation in 

country A.  

The reduced-form demand system is obtained by solving the equilibrium conditions (2), 

(3) and (4) for local and transit demands in the two countries as a function of all tax rates: 

[ ]
[ ]

[ ]
[ ]

, , ,

, , ,

, , ,

, , ,

r
A A A B B

r
B A A B B

r
A A A B B

r
B A A B B

X t t

X t t

Y t t

Y t t

τ τ

τ τ

τ τ

τ τ

                                                             (5) 

The properties of these functions are analysed in detail in Appendix 1. For example, there 

it is shown that the demand functions for transit and local transport in countries A and B 

have the following properties:  

0, 0 0,

0, 0 0, 0

r r r r
A A A A

A B A B
r r r r

A A A A

A B A B

X X X X
t t

Y Y Y Y
t t

τ τ

τ τ

∂ ∂ ∂ ∂< > > <
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂> < < >
∂ ∂ ∂ ∂

0
                              (6) 

0, 0 0,

0, 0 0, 0

r r r r
B B B B

B A B A
r r r r

B B B B

B A B A

X X X X
t t

Y Y Y Y
t t

τ τ

τ τ

∂ ∂ ∂ ∂< > > <
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂> < < >
∂ ∂ ∂ ∂

0
                              (7) 

To understand the intuition behind these effects, note that any tax change has two effects: 

first, it affects the distribution of transit over the two routes and, second, by affecting 
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congestion levels in the two regions, it has an impact on the competition in each 

country between transit traffic and local traffic for the same road space. Consider two 

examples. First, take the effect of increasing the transit tax in B (τB ). This tax increase 

will make route B less interesting for transit traffic so that BX  goes down, whereas 

demand for transit on route A rises. However, there are secondary effects. The direct 

positive effect on XA raises congestion in A and hence the generalised user cost, whereas 

the lower volume of transit on route B decreases the generalised cost of using route B. 

The changes in congestion mitigate the initial transit effects described before. More 

importantly, the reduction of congestion in B raises the demand for local traffic in that 

country, whereas the increase of the generalised cost of route A implies a reduction in 

demand for local transport Y . Second, consider the effect of raising the charge tA A. The 

direct effect will be to decrease the demand for local traffic Y . However, this reduces 

the generalised cost of transit in A and hence increases transit traffic 

A

AX , which mitigates 

the initial effects in A. Moreover, the local tax increase in A reduces transit demand in B 

and hence generalised user cost in that region. Consequently, demand for local transport 

in B, Y , increases.  B

Finally, note the following useful result, formally shown in Appendix 1, on the relative 

impact of a transit tax and a tax on local transport on the demand for transit: 

r r
A A

A A

X X
tτ

∂ ∂>
∂ ∂

   

Both taxes have opposite effects, but in absolute value the transit tax has a larger effect 

on transit demand than an increase in the tax on local traffic. This makes intuitive sense 

because a higher local tax only affects transit demand indirectly via the induced reduction 

in congestion. This finding will be useful for the interpretation later.  

Using the reduced-form demand system we proceed to analyse the optimal behaviour of 

a given country, conditional on the tolls set abroad. We assume that the appropriate 

objective function used by each of the governments is a welfare function that consists of 

the sum of consumer surplus for the local users plus the total tax revenues earned on local 
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and transit traffic on its territory. Consumer surplus for foreigners is assumed to be 

ignored. Consider, therefore, the problem of country A: 

                                    
,

0

( ( ))
A

A A

Y
Y Y

A A A A A A A A At AMax W P Y dY g Y t Y X
τ

τ= − +∫ + ,                (8)  

where, see before, ( )Y
A A A Ag C X Y t= + A+ , and the reduced-form demands for AX  andY  

depend on all four tax rates, see (5). Moreover, the country takes the tolls t  in 

country B as given. 

A

B,B τ

The first-order conditions for an interior solution to (8) can be written, using the fact 

that in equilibrium generalised costs and generalised prices are equal, as: 

0
r r

A A A A
A A A A

A A A A

C Y C Xt Y Y
V t V t

τ
   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   

= ,                          (9) 

0
r r

rA A A A
A A A A A

A A A A

C Y C Xt Y Y X
V V

τ
τ τ

   ∂ ∂ ∂ ∂− + − +   ∂ ∂ ∂ ∂   
=

A

,               (10) 

where  is the total (local plus transit) traffic volume in country A. Solving 

(9) and (10) yields the optimal tax rules for country A. In Appendix 1 we show that the 

following results hold:  

A AV X Y= +

A
A A A

A

Ct LMEC X
V

∂= +
∂

                                               (11) 

r
A

A
A A A r

A A

A A

Y
tLMEC X

z X
t

τ

τ

 ∂
 ∂= −

∂ ∂ 
 ∂ ∂ 



A

                                   (12) 

                                                  .                                                                          (13) A tτ >

Analogous results can be derived for country B. In these expressions, ALMEC  is the 

local direct marginal external congestion cost, defined as: 

                  A A A
A A A A

A A A

C C CLMEC Y Y Y
V X

∂ ∂ ∂= = =
∂ ∂ ∂Y
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It captures the effect of extra traffic on the generalised user cost in country A, 

multiplied by the number of local users of the link. It is a direct marginal external cost in 

that it does not take into account feedback effects on demand. Note that country A does 

not consider the time losses imposed on transit traffic through A as part of the relevant 

local marginal external cost. 

We summarise our findings in Theorem 1. 

THEOREM 1: In the case of a differentiated toll between local and transit traffic 

and assuming there is local and transit transport in both regions, (i) optimal local 

and transit tolls both exceed the local marginal external cost; (ii) the transit toll is 

strictly larger than the local toll. 

The theorem immediately follows from the signs of the reduced-form demand price 

effects, see (6) and (7). Intuitively, the local toll exceeds LMEC because the true 

opportunity cost of an increase in local traffic not only covers the local direct marginal 

external cost but also the opportunity cost of the lost tax revenues on transit: more local 

traffic implies higher congestion and hence less transit demand3. The reason for the 

transit tax to exceed the tax on local transport is due to tax exporting behaviour: country 

A does not take into account the effect on congestion and tax revenues abroad.  

 

                                                 

3 Note that, for the specific model structure considered here, it turns out that the local tax equals the 
global direct marginal external cost of a traffic increase in country A, defined as 

 ( ) A A
A A A A

A A

C CGMEC Y X V
V V

∂ ∂= + =
∂ ∂

.    

The global marginal external cost is the increase in generalised cost from an extra unit of traffic, multiplied 
by the total number of road users in A. That the local tax exceeds the local marginal external cost is a 
general result, that it precisely equals the global marginal external cost is an artefact of the model structure. 
The intuition can be understood by the definition of the generalised cost in combination with the structure 
of the objective function. Transit traffic is indifferent between paying one Euro more in time costs and one 
Euro more in transit tolls. The government that hosts the transit traffic obviously prefers the transit toll. 
Therefore, the opportunity cost of allowing one more unit of local traffic equals the local marginal external 
cost plus the total transit revenue foregone through the increase in average costs for transit traffic. The 
definition of generalised costs implies that the increase in average costs (the marginal external cost of the 
transit traffic) equals the total transit revenue foregone. 
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2.3. Optimal tolls in a parallel network: uniform tolls 

Suppose countries are limited to uniform tolls, i.e., the toll is restricted to be the same for 

local and transit trips. Denote the uniform tolls by Aθ  and  in regions A and B, 

respectively, where .  

Bθ

( , )i i it i A Bθ τ= = =

Solving the equilibrium conditions (2), (3) and (4) for the case of uniform tolls now 

yields the system: 

[ ]
[ ]

[ ]
[ ]

,

,

,

,

r
A A B

r
B A B

r
A A B

r
B A B

X

X

Y

Y

θ θ

θ θ

θ θ

θ θ

                                                           (5bis) 

In Appendix 2 we show that the reduced-form demand functions for A (analogous results 

hold for B) have the following properties: 

                   0 , 0, 0, 0
r r r r
A A A A

A B A B

X X Y Y
θ θ θ θ

∂ ∂ ∂ ∂< > <
∂ ∂ ∂ ∂

<

                                                

 

To understand these effects note that, in principle, an increase in the uniform tax in a 

region is expected to have a double effect on transit (local) demand in that region: a direct 

negative effect, and an indirect positive effect due to the lower volume of local (transit) 

traffic. The above results show that the former effect dominates the indirect feedback 

effect4.  Moreover, we also find that an increase in the uniform tax abroad (e.g. in B) 

raises transit demand but reduces local demand (e.g., in A). The reason is simply that 

overall transit demand is shifted from B to A, which in turn raises congestion in A and 

hence lowers local demand in A. 

Using these reduced-form effects, the optimal uniform toll for country A is easily 

derived. The first-order condition to the problem 

 

4 For transit, this is in line with our earlier finding that, in the case of differentiated taxes, in absolute value 
the effect of the transit tax exceeded that of the tax on local transport.  



 15

                                    
0

( ( )) * (
A

A

Y
Y Y )A A A A A A A A AMax W P Y dY g Y Y X

θ
θ= − +∫ +  

can be written, after simple manipulation (see Appendix 2): 

                   
r

A A
A A r r

A AA

A A

C XY
Y XV

θ

θ θ

∂= −
∂ ∂∂ +
∂ ∂

 

This immediately tells us that: 

A ALMECθ >  

unless transit in A is zero. The optimal uniform toll exceeds the local direct marginal 

external cost, and it rises with transit5. In some sense, this finding can be considered a 

generalisation of a result by Arnott and Grieson (1981). Intuitively, the toll balances the 

distortion on the local transport market and the revenue opportunities on transit. We 

summarise this result in Theorem 2. 

THEOREM 2: If countries are restricted to the use of uniform tolls on local and 

transit transport, the optimal uniform toll exceeds the local marginal external cost. 

Moreover, it will be higher the more important is transit traffic through the 

country.   

 

2.4.  Optimal tolls in a parallel network: the case of local tolls only 

Suppose the government cannot tax transit ( ). For example, this may be 

the case when it is limited to the use of fuel taxes. The equilibrium conditions (2), (3) and 

0 ( , )i i A Bτ = =

                                                 

5 Note that the above result implies that the toll exceeds LMEC even at very small shares of transit 
transport. This might seem counterintuitive. Indeed, intuitively one could argue that when the transit share 
is very small compared to local traffic, the decrease in average time costs due to a higher tax on local 
transport might in turn more than compensate the toll increase for transit, so that the full effect of a toll 
increase on transit may be positive. Interestingly, this intuitive argument is wrong. Wardrop equilibrium 
implies equality between the generalised prices of transit via A and B. An increase in the uniform toll in A 
raises the generalised price for transit in A. Hence, overall transit declines, and a proportionally larger share 
uses the route via B. The implication is that transit through A must necessarily decline. 
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(4) can then be solved for the system of reduced form demand functions that depend 

on the local tolls in both countries: 

[ ]
[ ]

[ ]
[ ]

,

,

,

,

r
A A B

r
B A B

r
A A B

r
B A B

X t t

X t t

Y t t

Y t t

                                                 (5ter) 

The signs of these demand equations are identical to the reduced demand functions of the 

differentiated toll case. Own price effects are negative, cross price effects positive. 

The first-order condition to the problem for country A: 

                                    
0

( ( )) *
A

A

Y
Y Y

A A A A A A A At
Max W P Y dY g Y t Y= −∫ +  

implies, see Appendix 3: 

 1

r
A

A A
A A r

AA

A

X
C tt Y

YV
t

 ∂
 ∂ ∂ = +

∂∂  
 ∂ 

 

where the term between square brackets is shown to be positive. Using the signs of the 

demand functions this implies: 

  0 A At LMEC< <

We summarize this finding in Theorem 3. 

THEOREM 3: If only local traffic can be tolled, the optimal toll is positive but 

smaller than the local marginal external cost. 

To understand the intuition, note that an increase of the toll on local traffic has two 

effects. On the one hand, the toll reduces local transport demand, a welfare-raising 

correction for the externality this traffic imposes. If there were no transit, a toll equal to 

LMEC would be optimal. However, on the other hand, the reduction in local traffic 

reduces the average time cost for transit and attracts more transit; this decreases local 
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welfare and induces a tax below LMEC. If transit traffic reacts very strongly to an 

average travel time cost decrease, it may be optimal to set the tax very low so as to avoid 

attracting too much transit.  

  

2.5. Summary   

It is instructive to summarise the findings of this section in the following Table 2. The 

results show that depending on the policy instruments available, a wide range of optimal 

tolling schemes is possible. Some of these may well be consistent with observed practice. 

The use of vignettes in some countries comes close to the idea of tax differentiation, and 

it indeed implies the potential for tax exporting to foreigners. It is also often observed that 

countries that have difficulties in taxing transit either are very slow in imposing local 

congestion taxes (consider the discussion on road pricing in the Netherlands), or they are 

even explicitly opposed to specific congestion taxes unless transit can also be taxed 

(Belgium, Luxemburg, etc.). The results presented here for the case ‘local tolls only’ are 

not inconsistent with this type of behaviour, especially if one takes account of 

implementation costs.   

Table 2: Summary of optimal tolling rules 

Tolling regime Results on 
optimal tolls 

Interpretation 

Differentiated tolls i LMECτ > i  

i it LMEC>  

i itτ >  

- Local and transit toll exceed local 
marginal external congestion cost  
- Transit toll exceeds local toll 

Uniform tolls i i tθ τ= = i  

i iLMECθ >  
- Uniform toll exceeds local marginal 
external congestion cost 

Local tolls only 0 it LMEC< < i  
 

- Tolls on local traffic are positive but 
below marginal external congestion 
cost  
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3. Nash equilibria for linear cost and demand functions 

To formally study the properties of the reaction functions, implied by the optimal tax 

rules, and the resulting Nash equilibria, it is instructive to impose more structure on the 

problem. In this section we therefore focus on linear demand and cost functions in order 

to explicitly solve for reaction functions and to obtain more details on the different types 

of equilibria that may result. Moreover, these simplifications pave the way for the 

numerical analysis that follows in Section 4. 

   

3.1 Model structure 

Specifically, we use the following linear inverse demand functions: 

                                                                                          (14) 

( )
( )

( )
, , , , , 0

X

Y
A A A A A
Y

B B B B B

A A B B

P X a bX
P Y c d Y

P Y c d Y
with a b c d c d

= −

= −

= −
>

Cost functions for transport time (and resources) are specified as: 

              
( ) ( )
( ) (

, 0
)

A A A A A A A

B B B B B B B

C X Y X Y
C X Y X Y
with

α β
α β

α β

+ = + +
+ = + +

>
                                                                     (15) 

We only consider the general case where both regions have transit and domestic 

transport. We first discuss the case of differentiated tolls and continue with uniform tolls 

and the case of local tolls only.  

 

3.2 Reaction functions and Nash equilibrium for the different tolling regimes 

The algebraic derivations to arrive at the reaction functions and to show the existence of a 

Nash equilibrium for the various tolling regimes are conceptually simple, but somewhat 

tedious. We have therefore delegated the derivations to Appendix 4 and limited the 

discussion here to the economic implications of our findings. 
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Differentiated tolls 

The reaction functions for country A are given by the following linear expressions: 

                                                          

2 4

1 1

2 4

1 1

1 1( ) ( )
2 2
1 1( ) ( )
2 2

A A

A A B BA A

A A
t A

A A BA A

c t

t c K K t

τ γ γτ τ
γ γ
γ γτ
γ γ

= − −

= + + A
B

                    (16) 

where the coefficients are explicitly defined in Appendix 4. Here it suffices to note: 

1 2 40, 0, 0A A Aγ γ γ< > <  

2 4
A Aγ γ>  

1 0AK− < <  

Interpretation of the signs of the foreign taxes on optimal local taxes in A is then clear. 

We find that an increase in the transit tax abroad induces country A to optimally adjust 

both its transit tax and the tax on local traffic upwards, but that the impact on the transit 

tax is larger than the effect on the local tax. Why is this the case? The higher tax on 

transit in B reduces transit there and raises transit demand in A. This increases local 

congestion in A. The optimal response in A is therefore to raise both taxes. Similarly, a 

higher local tax in B induces country A to optimally reduce transit as well as local taxes 

in A. The higher tax in B reduces congestion in B and makes B relatively more and A 

relatively less attractive to transit traffic. This also reduces both congestion and tax 

revenues in A. To compensate country A raises its tax rate on local traffic; this increases 

congestion but raises tax revenues.  

Reaction functions for B have the same structure. In Appendix 4 we formally show, 

always assuming that all types of transport are positive at the equilibrium, existence of a 

Nash equilibrium and explicitly solve for the four equilibrium tax rates. However, not 

surprisingly, the solution for the Nash equilibrium itself is too complicated to yield extra 

economic insights. Therefore, to study the properties of the equilibrium in function of a 

number of crucial parameters describing the tax competition problem (e.g., the size of the 
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country, the importance of transit etc.), we resort to numerical analysis in Section 4 

below. 

 

Uniform tolls 

The reaction function for country A as a function of the uniform tax rate in B is given by 

the linear relation: 

32

1 1

tuAtuA

A BtuA tuA

cc
c c

θ = + θ                                                    (17) 

where, see Appendix 4, c , , . An analogous result holds for B. This 

shows that the reaction functions are upward sloping. Given our assumption that both 

types of traffic exist in the equilibrium in both countries, a Nash equilibrium can again be 

shown to exist.  

1 0tuA > 2 0tuAc > 3 0tuAc >

Local tolls only 

The reaction function for country A is shown to be: 

32

1 1

tlAtlA

A BtlA tlA

cct
c c

= + t

                                                

                                                        (18) 

where , , . 1 0tlAc > 2 0tlAc > 3 0tlAc >

Again, the slope of the reaction functions is positive, and (assuming both types of traffic 

exist at the equilibrium) existence of a Nash equilibrium can be shown, see Appendix 4.  

 

4. Numerical illustration 

4.1 Central scenario 

In order to illustrate the theoretical analysis, a numerical model is used that fully 

corresponds to the linear model developed in the previous section.  The data represent 
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realistic orders of magnitude for the situations modelled above, but do not correspond 

to a particular real-world example.  The central scenario uses a fully symmetric version 

of the model, with identical congestion functions and local demand functions for both 

countries.  The congestion function is a linear approximation to the French functional 

form for highways (Quinet, 1998: 139), at a reasonably congested traffic volume.  This is 

combined with linear demand functions for both local and transit travel.  The precise 

parameterization of all functions is chosen so as to yield reasonable generalized price 

elasticities and congestion levels (including marginal external congestion cost); cf. more 

detail below.   

In addition to symmetry, the central case also assumes a 50/50 distribution of transit and 

local traffic in each country, in the zero-toll situation (the parameterization is constructed 

for that zero-toll case).  Table 3 shows some basic properties.  Transit demand is twice 

local demand in A or B, and it is equally distributed over both countries (endogenously).  

The time cost is taken to be 50% of the generalized price.  The non-time component is 

fixed across simulations. 

 

Table 3 Zero-toll symmetric equilibrium (central case parameterization) 

 Intercept Slope Level Unit 
Local demand, A=B 1690 -5.96 1300 Trips 
Transit demand 3380 -11.92 2600 Trips 
Time cost function, A=B 1.617 0.012 32.7 Euro/trip 
Generalized price, A=B   65.4 Euro/trip 
Local MEC, A=B   15.5 Euro/trip 
Global MEC, A=B   31.1 Euro/trip 
Note: all trips are taken to be 100km long; the trip levels are hourly levels 

In Tables 4 and 5 some relevant findings for the above parameterization are 

summarized; the following cases are distinguished: 

 S1: No toll equilibrium, to which the model is calibrated; 

 S2: Nash equilibrium with differentiated tolls; 

 S3: Nash-equilibrium with uniform tolls on local and transit traffic;  

 S4: Nash equilibrium with local tolls only; 
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 S5: Centralized solution with differentiated tolls (aggregate welfare 

maximization of transit and non transit countries); 

 S6: Centralized solution with local tolls only.  

In each scenario, the toll revenue is allocated to the two tolling countries. Note that, by 

construction, we obtain interior solutions for the counterfactual scenarios. Corner 

solutions are not analysed here.  

The results lead to the following observations. First, note that the numerical illustration 

broadly confirms the results of the theoretical analysis. For example, in the Nash 

equilibrium with differentiated tolls (S2), the local toll is equal to the global marginal 

external congestion cost, and the transit toll exceeds the local toll.  Imposing uniformity 

(S3) leads to a toll that is between the differentiated tolls of S2. Second, we find that the 

maximal attainable welfare gain from congestion tolls, i.e., the welfare gain for the 

centralised solution with differentiation (S5), compared to the no-toll equilibrium (S1) to 

be 1.58%.6  Note that, while toll differentiation is allowed in scenario S5, the resulting 

tolls are equal because marginal external costs are equal for both trip types. Third, the 

Nash-equilibrium with differentiated tolls improves overall welfare by 1.47%, or 93% of 

the maximal attainable gain.7  Not only is the relative gain from the differentiated Nash 

equilibrium high, also the shares of both countries and of transit in total welfare are fairly 

close to that of the centralised solution.  In both cases the shares of local traffic in welfare 

increase substantially compared to the no-toll situation, while that of transit traffic 

diminishes.8 Since the Nash equilibrium with differentiated tolls improves welfare 

substantially and brings us close to the social welfare optimum, one could argue that the 

welfare costs of the lack of cooperation between countries seem to be relatively modest.  

                                                 

6 This order of magnitude is in line with that of earlier studies (see the results for the Trenen-model in De 
Borger and Proost (2001)) . 
7 These results can be compared to the case where the roads are owned by two profit-maximizing firms.  
The resulting Nash-Bertrand equilibrium would produce 90.4% of the welfare of the centralised social 
welfare optimum.  The welfare costs of private ownership in this model are high because each firm has a 
monopoly over local traffic, and competition only concerns transit.  If both roads are owned by one 
monopolist, the resulting welfare level is 80.9% of the centralised social welfare optimum. 
8 The resulting welfare loss for transit could be expected, as transit trips are priced below marginal social 
costs in the reference equilibrium.  A toll is needed for reasons of efficiency, but transit does not share in 
the toll revenues. 
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At any rate, tolling with no coordination is better than no tolling (for overall welfare, 

not for transit). 

Fourth, comparison of the Nash equilibrium with and without toll differentiation (S2 

and S3) suggests that the uniformity constraint actually implies an overall welfare loss, be 

it small (0.06%-point).  The effect on the local toll is large, however; it increases from 

27.1 Euro/trip to 36.8 Euro/trip.  That the impact on local welfare is small is due to the 

fact that tax revenues have the same welfare weight as consumer surplus.  In that respect, 

note that the uniform toll in S3 is close to the transit toll in S2.  Transit experiences a 

welfare loss that is very close to that of the differentiated toll case, meaning that the 

uniformity restriction does not protect them from welfare losses.  Overall, the example 

indicates that the welfare effects of the Nash outcome with uniform tolls are quite similar 

to the outcome with differentiation.  

Fifth, things are very different with the assumption that transit trips cannot be tolled: the 

performance of both the Nash and the centralised outcome (S4 and S6) is substantially 

worse than in the cases where transit is tolled.  The Nash equilibrium without transit tolls 

(S4) generates 23% of the welfare gain in the Nash equilibrium with differentiated tolls 

(S2).  The centralised solution with zero transit tolls produces 49% of the gain with 

optimal differentiation (compare S5 and S6). Note also that the centralised solution with 

zero transit tolls performs worse that the Nash equilibrium with or without toll 

differentiation. 
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It seems therefore, that welfare losses are much more substantial when transit remains un-

tolled than when differentiated or uniform tolls are used. Moreover, from the welfare 

maximization scenarios (S5 and S6), it can be inferred that the large loss of performance due 

to zero transit tolls simply follows from the fact that a large portion of trips is un-tolled.  Local 

traffic is taxed at less than the global marginal external cost, but the difference is small.  

Moving from a centralised (S6) to an uncoordinated solution (S4), under the zero transit toll 

constraint, introduces an additional source of efficiency loss: countries find it in their best 

interest to tax local traffic at far less than the global marginal external congestion cost.  As 

countries care about local welfare only, they set local tolls at a low level, so encouraging local 

trip demand and indirectly discouraging transit trips. Transit is obviously the main beneficiate 

of these local tolls. They actually increase their welfare level.  

The different scenarios with zero transit tolls are of interest because zero tolls on transit 

traffic mimics current conditions in Europe, at least for transit countries that are small enough 

to allow transit to pass without taking fuel. The impact of zero transit tolls is nicely 

summarised in Table 6. Comparing S2 and S4 shows that zero transit tolls induce countries to 

set very low local transport taxes; however, it implies very low welfare gains compared to the 

benchmark of zero tolls. Finally, note that Table 6 also reports on the case of collusion 

between countries A and B for the case of zero transit tolls, scenario S7. It does not 

fundamentally change the outcome, see the last column of Table 6. 

 

Table 6 The impact of zero transit tolls 

 S1 S2 S4 S7 
 No tolls 

(benchmark) 
NE tolls (both 
instruments) 

NE for zero transit 
toll 

Collusion for zero 
transit toll 

Local toll 0 27.1 6.82 13.7 
Transit toll 0 37.9 0 0 
Local mecc 15.5 13.9 15.1 14.6 
Global mecc 31.1 27.1 30.7 30.2 
Local welfare 141,748 186,492 142,164 142,303 
Transit CS 283,495 202,364 284,603 285,731 
Total welfare 566,991 575,348 568,931 570,337 
Welfare change vs. S1 0 1.47% 0.34% 0.59% 
 

The numerical illustrations presented so far capture a situation where transit traffic forms a 

large share of total traffic, and where transit chooses between similar (here: identical) options.  

To summarise, the results indicate that: 
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 It is important to introduce some form of transit tolling; the welfare effects of tolling 

transit are large. 

 The precise type of transit tolling (uniform local and transit tolls versus differentiated 

transit tolls) has relatively small effects on efficiency  improvements compared to the 

no tolling situation. 

 A toll on transit decreases the welfare level of transit because they do not share in the 

toll revenues. A uniformity restriction for local and transit tolls does not protect the 

transit from welfare losses. Transit prefers that only local traffic is tolled.  

 

4.2 Varying the share of transit in the no-toll equilibrium 

The transit share in the central scenario was 50% in both countries. In this sub-section we 

briefly consider the impact of changing the relative importance of transit; apart from that, the 

countries are still assumed to be symmetric. The following Figure shows the effects of varying 

the share of transit between 1% and 50%, while keeping the no-toll total traffic volumes at the 

levels of the central scenario (so this reflects ‘constant congestion’ compared to the central 

scenario).  

Figure 2 Tolls as a function of no-toll transit share 

25
27
29
31
33
35
37
39

0 10 20 30 40 50 60

% transit in no toll equilibrium

local toll
transit toll

 

 

The local toll decreases slightly as the share of transit increases, while the transit toll 

strongly increases.  As the transit share goes to zero, the model converges to marginal social 
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cost pricing; at the 1% transit share, the transit toll exceeds the local toll by just 0.87%.  

Higher transit shares lead to higher transit tolls; the local toll decreases somewhat because the 

higher transit toll leads to lower traffic levels, therefore lower (global) marginal external costs, 

therefore lower tolls.  

It is interesting to find out if the qualitative results concerning the impacts of various pricing 

constraints change when transit shares are decreased.  In order to do this, we reconsider 

scenarios S1 – S6 for a reference transit share of 10% (instead of 50%).  The results are in 

Table 7 and Table 8. The maximal attainable welfare gain (S5) is the same as in the central 

scenario, because overall traffic and congestion conditions have not changed. The welfare loss 

from not coordinating between countries (compare S2 and S5) is even smaller than in the 

central scenario, as there is less transit and therefore less of a conflict between local and 

global welfare. The Nash equilibrium with toll differentiation and the overall welfare 

maximum are – for all practical purposes - identical in welfare terms.  Furthermore, the 

welfare loss from uniformity is the same as in the central scenario (0.06%-point). As 

previously, the welfare level of transit decreases when it is tolled.  

Not surprisingly, with low transit shares the inability to toll transit traffic is less detrimental 

than in the central scenario.  In scenario S4, the Nash equilibrium with a local toll only, 62% 

of the gain from the gain in the Nash equilibrium with differentiation (S2) is obtained.  In S6, 

overall welfare maximisation with a local toll, 90% of the maximal attainable gain (S5) 

results.  It is still the case, however, that the Nash equilibrium with uniform tolls (S3) does 

better than welfare maximisation with local tolls only (S6). 
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4.3 The effects of asymmetry between countries 

4.3.1 Asymmetrical local demand functions 

In this sub-section, aggregate trip demand for the whole network in the no-toll 

equilibrium is held at the level of the central scenario, but the distribution of local traffic 

(and, consequently, of transit demand) between countries is changed.  More precisely, (i) 

the transit demand function is assumed to be the same as before; (ii) the sum of local 

demand over both countries is the same as before; (iii) but, local demand in country A is 

decreased and that in country B is increased (in the reference case, the no-toll 

equilibrium). The local demand functions are adapted accordingly (implying both a shift 

and a change in slope, as the reference elasticity of demand is held constant). The 

scenario so obtained could be interpreted as the case of a densely populated vs. a sparsely 

populated country (countries B and A respectively).  

The results are summarized in Table 9.  The top part of the table describes the effects of 

the asymmetry on the reference equilibrium. From left to right we decrease the local 

demand in country A and correspondingly increase local demand in B.  Since road 

capacity does not change, a larger share of (constant) transit demand is attracted to 

Country A.  By construction, the local marginal congestion cost in Country A decreases, 

that in Country B increases, and the generalized cost and the global marginal congestion 

costs are the same as in the central scenario  in both countries in the reference 

equilibrium. 

The implications of the asymmetry for the Nash equilibrium with differentiated tolls are 

fairly straightforward.  Implementing the differentiated tolls leads to smaller local 

demand reductions in Country A as the asymmetry increases, while local demand 

reductions in Country B become larger.  The effect of the asymmetry on the total transit 

demand reduction is very small.  Also, as Country A carries more transit flow (in relative 

and in absolute terms), the move to the Nash equilibrium implies a larger reduction in its 

share in total transit flow.  Stronger asymmetry implies a lower local toll and a larger 

transit toll in Country A, with the opposite directions of change in Country B.  The local 

marginal congestion costs in Country A decrease less as the asymmetry is larger, while 

the global marginal congestion cost decreases more strongly.  In terms of welfare, the 

 



 30

gain from the Nash differentiated tolls in Country A becomes larger as its local 

willingness to pay for trips is smaller, for constant road capacity.  Correspondingly, the 

gains for Country B become smaller.  Notably, the transit welfare reduction after 

introduction of the differentiated tolls hardly depends on the asymmetry. 

This exercise suggests that a country which is in a position to attract a lot of transit 

traffic, because it has a lot of road capacity and/or little local demand, will benefit a lot 

from a differentiated toll on local and transit traffic.  The competitive advantage that 

follows from having sufficient capacity that is not congested from local use, enables the 

country to raise substantial amounts of toll revenue from non-local users, so increasing 

local welfare.  The welfare potential of the competing country decreases, but transit users 

do not suffer more or less.  In short, this example suggests that countries have strategic 

incentives for provision of infrastructure.  Endogenising the capacity provision decision 

seems to be a worthwhile extension of this paper. 
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4.3.2 Asymmetrical congestion functions 

Here we test the sensitivity of results to differences in the congestion functions between 

countries.  The congestion function for Country B is the same as in the central scenario.  For 

Country A, the slope is decreased, simultaneously increasing the intercept in order to retain 

the volumes and travel times (in both countries) of the central scenario.  In other words, the 

congestion function for Country A is tilted around the reference point for the central scenario.  

The congestibility of the road in Country A is decreased, but the fixed component of travel 

time is increased.  This could be interpreted as making the road in Country A longer and 

larger.  Note that this implies decreasing the congestibility of the parallel network, from the 

transit traffic point of view. 

The results are in Table 10.  Column A is the central scenario.  In columns B through D, the 

slope of the congestion function of Country A is reduced by 5 to 15% and the intercept is 

adapted to keep reference volumes and distributions constant (see top half of the table).  In 

column E, the slope of the congestion function of Country A is reduced to epsilon, implying a 

virtual absence of congestion.  The effects of the experiment on the impact of introducing 

Nash equilibrium tolls is limited, except in the extreme case of column E.  Introducing the 

asymmetry reduces the optimal tolls, mainly in Country A.  The transit toll in Country B is 

least sensitive to the asymmetry.  Note that the local toll in Country A converges to zero as 

the road becomes congestion-free; this is entirely in line with theory, as the toll is still equal to 

the global marginal congestion cost.  The local welfare gains from the tolls decrease, which 

could be expected as the initial inefficiency from congestion becomes smaller with the 

network capacity increase.  More importantly, the country with the more congestible network 

(Country B) tends to gain relatively more from the introduction of the tolls than the one with 

the less congestible network (Country A).  This effect is small, however. 
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5. Summary, conclusions and directions for future research 

In this paper we studied optimal and strategic pricing of local and transit traffic on a simple 

parallel network. The tolling authority on the individual links of the network was assumed to 

be assigned to different countries. We first theoretically analysed Nash equilibria in this 

setting for three types of pricing structures: differentiated tolls between local and transit 

traffic, uniform tolls, and local tolls only. Then a numerical model was used to illustrate the 

main results and to assess the welfare effects of various pricing constraints and of (the lack of) 

coordination between countries. Moreover, the relevance of the share of transit in total 

transport demand and of asymmetries between countries was numerically illustrated.  

 The conclusions are easily summarised. First, the welfare effects of tolling transit seem to be 

large, but there is almost no difference in global efficiency between uniform and 

differentiated tolling. Specifically, differentiation between local and transit tolls as compared 

to uniform tolls does not yield large welfare differences, although obviously tolls on transit 

may differ substantially. Allowing differentiated tolls in an uncoordinated setting tends to go 

at the expense of transit traffic. Second, the welfare effects of coordination between countries 

are relatively small in comparison with the welfare gains of tolling transit. The outcome when 

countries behave strategically but do tax transit (e.g., the Nash equilibrium with uniform tolls) 

yields higher welfare effects than the coordinated welfare optimum for the network as a whole 

when transit is not tolled. Third, the effect of higher transit shares on the Nash equilibrium 

with differentiated tolls is to strongly raise the transit toll and to slightly decrease the local 

toll. As the transit share goes to zero, the model converges to marginal social cost pricing for 

local traffic. Fourth, the impact of introducing asymmetries between countries is to raise 

welfare gains for the country with lower local demand (comparing the Nash-equilibrium to 

the no-toll equilibrium); welfare gains in the other country become less pronounced.  

 Finally, note that this paper could be extended along several lines. First, we have limited the 

analysis to cases where at all equilibria both local and transit transport occur in both regions. 

Although the case of zero local traffic is not very interesting, allowing corner solutions at zero 

transit does seem a relevant case to consider. Under specific conditions, countries could 

actually choose to eliminate all transit on their territory. Studying these conditions seems a 

relevant addition to the analysis of this paper. Second, different pricing instruments (road 

pricing, fuel taxes, vignettes, etc.) could be introduced explicitly. This would probably make 
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the theoretical analysis intractable, but it would enrich the numerical results. Third, one could 

incorporate freight transport and analyse partial taxation of the network (e.g., toll trucks but 

not passengers). Fourth, the transition process of introducing tolling instruments sequentially 

could be explicitly studied. For example, given that one country moves from a system with 

local tolls only to a system with explicit transit tolling, how does this affect optimal responses 

by the other country? Alternatively, if a country moves from differentiated tolls towards 

uniform tolls, what is the optimal response for the other country? What do the resulting Nash 

equilibria look like? 
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Appendix 1: Detailed analysis of the case of differentiated tolls 

In this appendix we study in more detail the case of differentiated tolls on local and transit 

transport. We derive the reduced form demand system and discuss its properties, and we 

derive the optimal toll results presented in the main body of the paper.  

The reduced-form demand system 

Using (1) and focusing on the case where there is local and transit traffic in both regions, the 

system consisting of (2), (3) and (4) can be reformulated as 

                                                       ( ) ( )X
A B A A AP X X C X Y τ+ = + + A                                (A.1) 

 ( ) ( )X
A B B B BP X X C X Y τ+ = + + B              (A.2) 

 ( ) ( )Y
A A A A AP Y C X Y t= + A+

+

                  (A.3) 

                   (A.4) ( ) ( )Y
B B B B B BP Y C X Y t= +

This system of four equations can easily be solved for the reduced form demand functions as 

functions of the four tax rates. A particularly instructive way to do this is to first solve (A.3) 
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and (A.4) separately for the demands for local transport as a function of transit demands and 

local tax rates in a given region: 

( ,A A A AY z X t= )

)

                         (A.5) 

( ,B B B BY z X t=                          (A.6) 

Note that application of the implicit function theorem to (A.3) implies: 

                         0

A

A A
Y
A AA

A A

C
z V

P CX
Y V

∂
∂ ∂=

∂ ∂∂ −
∂ ∂

<                            (A.7) 

                      1 0A
Y
A AA

A A

z
P Ct
Y V

∂ =
∂ ∂∂ −
∂ ∂

<

A

B

                                                   (A.8)  

where  

                        V X  A A Y= +

is the total transport volume in A. Using (A.4), an analogous result is derived for B. 

Interpretation is simple: an exogenous increase in transit in a given region reduces the demand 

for local transport, as it raises local congestion and hence generalised user cost.  Raising the 

local tax, at a given transit level, reduces local demand for transport.  

Substituting (A.5)-(A.6) into (A.1) and (A.2) yields two equations in ,AX X  as a function 

of all four tax rates: 

                                                       [ ]( ) ( , )X
A B A A A A AP X X C X z X t τ+ = + + A   (A.9) 

[ ]( ) ( , )X
A B B B B B BP X X C X z X t τ+ = + + B           (A.10) 

The solution of this system yields the reduced-form demand functions for transit, denoted in 

the main body of the paper as [ ], , ,r
A A A B BX t tτ τ  and [ ], , ,r

B A A B BX t tτ τ , respectively. To 

determine the signs of the various tax effects on transit demands, totally differentiate system 

(A.9)-(A.10) and write the result in matrix notation: 
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(1 )

(1 )

X X
A A A A

A A
A A A AA

X X
B B BB B

B B
B BB B

P C z P C z dt d
X V X X V tdX

dX C zP P C z dt d
V tX X V X

τ

τ

 ∂ ∂ ∂ ∂ ∂ ∂ − + +   ∂ ∂ ∂ ∂ ∂ ∂    =   ∂ ∂ ∂ ∂ ∂ ∂   +− +   ∂ ∂∂ ∂ ∂ ∂    

 

Applying Cramers’ rule then yields, after simple algebra, the effects of tax changes on 

demand in A (analogous results hold for B): 

1 (1 )
X

A A A B B

A A A B

dX C z P C z
dt V t X V X B

   ∂ ∂ ∂ ∂ ∂  = − +    ∆ ∂ ∂ ∂ ∂ ∂    
       (A.11) 

1 (1 )
X

A B

A B

dX P C z
d X Vτ

B

BX
 ∂ ∂ ∂= − + ∆ ∂ ∂ ∂ 

                              (A.12) 

1 X
A

B B

dX P C z
dt X V t

 ∂ ∂ ∂= − ∆ ∂ ∂ ∂ 
B B

B


                                       (A.13) 

1 X
A

B

dX P
d Xτ

∂= −
∆ ∂

                                                         (A.14) 

where   

                               (1 ) (1 ) (1 )
X X

A A B B B B

A A B B B B

C z P C z P C z
V X X V X X V X

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∆ =  

Using (A.7) for k=A,B it follows: 

(1 ) 0

Y
k

k k
Y

k kk

k k

P
z Y

P CX
Y V

∂
∂ ∂+ = >

∂ ∂∂ −
∂ ∂

 

which immediately implies  . Note that (A.11)-(A.14) then imply:  0∆ >

                                     0, 0, 0, 0
r r r

A A A A A A A A

A A B B A A B B

dX X dX X dX X dX X
d d dt t dtτ τ τ τ

∂ ∂ ∂ ∂= < = > = > = <
∂ ∂ ∂ ∂

r

t
  

Moreover, (A.8), (A.11) and (A.12) imply 
r r
A A

A A

X X
tτ

∂ ∂>
∂ ∂

.   

 Finally, to determine the impact of taxes on local demands, note from (A.5)-(A.6) that 
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A A A

A A A

A A A

A A A

A A A

B A B

A A A

B A B

dY z dX z
dt X dt t
dY z dX
d X d
dY z dX
dt X dt
dY z dX
d X d

τ τ

τ τ

∂ ∂= +
∂ ∂
∂=
∂
∂=
∂
∂=
∂

A

A

  

so that, using all previous results, it immediately follows: 

                                0, 0, 0, 0
r r r r

A A A A A A A A

A A B B A A B B

dY Y dY Y dY Y dY Y
d d dt t dt tτ τ τ τ

∂ ∂ ∂ ∂= > = < = < = >
∂ ∂ ∂ ∂

 

For the reduced form demand functions for country B, the signs of the different tax effects are 

determined completely analogously. 

Optimal tax rules 

The first-order conditions to optimisation problem (8) are given by 

1
r r r r r r

Y Y rA A A A A A A
A A A A A A

A A A A A A A

Y Y C Y X Y YP g Y t Y
t t V t t t t

τ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂− − + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

0=   

0
r r r r r r

Y Y rA A A A A A A
A A A A A A

A A A A A A A

Y Y C Y X Y YP g Y t X
V

τ
τ τ τ τ τ τ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂− − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
=  

Using the fact that in equilibrium generalised cost equals generalised price and rearranging, 

the system can be written as: 

                                  0
r r

A A A A
A A A A

A A A A

C Y C Xt Y Y
V t V t

τ
   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   

=                  (A.15)  

                                  0
r r

A A A A
A A A A A

A A A A

C Y C Xt Y Y X
V V

τ
τ τ

   ∂ ∂ ∂ ∂− + − +   ∂ ∂ ∂ ∂   
=         (A.16) 

Writing the system in matrix notation and solving by Cramers’ rule yields the tax rule for 

local traffic as follows: 

                                  [ ]1 r
A

A A A
A A

Ct Y D X
D V t
 ∂= + ∂ ∂ 

AX∂
                                    (A.17) 
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where 

                                       
r r r r

A A A A A

A A A A A

Y X Y X z XD
t t tτ τ τ

∂ ∂ ∂ ∂ ∂ ∂= − =
∂ ∂ ∂ ∂ ∂ ∂

r
A

A

 

The last equality follows from the definition of the various demand effects derived before. 

Substituting D in (A.17) and slightly manipulating the result immediately leads to the result 

presented in the main body of the paper:  

                           ( ) A
A A A A A

A A

Ct Y X LMEC X
V V

∂= + = +
∂ ∂

AC∂                                            (A.18) 

Using similar procedures we find for the transit tax 

                                        

r
A

A A
A A A r

A AA

A A

Y
C tY X

z XV
t

τ

τ

 ∂
 ∂ ∂ = −

∂ ∂∂  
 ∂ ∂ 

                                                (A.19) 

Finally, comparison of (A.18) and (A.19) implies that the tax on transit exceeds the tax on 

local transport, implying tax exporting behaviour. To see this, note that our results imply 

r
A

A A
A A A r

A AA

A A

Y
C tt X

z XV
t

τ

τ

 ∂
 ∂ ∂ − = − +

∂ ∂∂ 
 ∂ ∂ 

 

Substituting
r r

A A A

A A A

Y z X
t X t

∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂

A

A

z
t

, using A A

A A

z C A

A

z
X V t

∂ ∂ ∂=
∂ ∂ ∂

(see (A.7)-(A.8)) and rearranging 

yields 

1
r r

A A A

A A A
A A A r

A

A

C X X
V t

t X
X
τ

τ

τ

  ∂ ∂ ∂+ +  ∂ ∂ ∂  − = −
 ∂
 ∂  

 

Using (A.11)-(A.12) and explicitly substituting then yields, after some manipulation:  ∆
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1

0
1

X
B B

B B
A A A X

B B

B B

P C z
X V X

t X
P C z
X V X

τ

  ∂ ∂ ∂+  ∂ ∂ ∂  − = >
  ∂ ∂ ∂− +  ∂ ∂ ∂   

 

Appendix 2: Detailed analysis of the case of uniform tolls 

Reduced-form demand system 

Using similar developments as in the differentiated tolling case we immediately obtain (the 

definition of  is unchanged): 0∆ >

1 1 (1
X

A A A B B

A A A B B

dX C z C zP
d V X V Xθ θ

    ∂ ∂ ∂ ∂∂ = + − +   ∆ ∂ ∂ ∂ ∂ ∂     
) 0<

         
    (A.20) 

                                                         1 1
X

A B

B B

dX C zP
d X V Xθ

  ∂ ∂− ∂= + ∆ ∂ ∂ ∂  
0B

B

>                         (A.21) 

Furthermore, analogous procedures as in the case of differentiated taxes immediately yield: 

 0, 0A A

A B

dY dY
d dθ θ

< <   

Optimal tax rules 

The first-order condition to the problem 

                                    
0

( ( )) * (
A

A

Y
Y Y )A A A A A A A A AMax W P Y dY g Y Y X

θ
θ= − +∫ + , 

can be written as: 

 1 ( ) ( )
r r r r r r

Y Y r rA A A A A A A
A A A A A A

A A A A A A A

Y Y C Y X Y YP g Y Y X
V

θ
θ θ θ θ θ θ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂− − + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
0=  

Simplifying and solving for the tax yields: 

r
A A

A A r r
A AA

A A

C XY
Y XV

θ

θ θ

∂= −
∂ ∂∂ +
∂ ∂

 

Appendix 3: Detailed analysis of the case ‘local tolls only’ 
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Reduced-form demand system 

The derivatives of the reduced-form demand functions with respect to the local tolls are easily 

shown to be identical to those for the differentiated tolling case. Indeed, the only difference is 

that the transit toll is set to zero. 

Optimal tax rules   

The first-order condition to the problem 

                                    
0

( ( )) *
A

A

Y
Y Y

A A A A A A A At
Max W P Y dY g Y t Y= −∫ +  

immediately yields, after simple manipulation: 

 0
r r

A A A A
A A

A A A A

Y C Y Xt Y
t V t t

  ∂ ∂ ∂ ∂− +  ∂ ∂ ∂ ∂  

r

=   

Solving for the optimal local toll leads to: 

 1

r
A

A A
A A r

AA

A

X
C tt Y

YV
t

 ∂
 ∂ ∂ = +

∂∂  
 ∂ 

 

Importantly, the term between square brackets can be shown to be positive (and smaller than 

one), implying the optimal tax is between zero and the local marginal external cost. To see 

this, remember that the derivatives of the reduced-form demand functions are given by the 

same expressions A.11 and A.13 as for the differentiated tolling case. Then substitute the 

definition of  and use A.7-A.8 to obtain, after straightforward manipulation:  ∆

[ ]
1

2 1

1
( )

r
A

A
r A

A A Y A A

A A A A A

X
t M
Y C P C z M M
t V Y V t

∂
∂+ =
∂  ∂ ∂ ∂ ∂− + ∂ ∂ ∂ ∂ ∂ 

                 (A.22) 

where  

1 1 0
X

B B

B B

C zPM
X V X

 ∂ ∂∂= − + > ∂ ∂ ∂ 
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 2 1
X

B B

B B

C zPM
X V X

 ∂ ∂∂= − + ∂ ∂ ∂ 
<0 

It immediately follows that the both the numerator and the denominator of the right-hand side 

of A.22 are positive. .  

Appendix 4: Details on the reaction functions and the Nash equilibria 

1. The case of differentiated tolls 

We consecutively derive the reduced-form demands, the reaction functions, and the Nash 

equilibrium.  

To get the reduced-form demands, we follow the procedure outlined in Appendix 1 for the 

linear demand and cost functions given in the main body of the paper. The demands for local 

transport conditional on transit and the local tax are given by 

0 1 2

0 1 2

A A A
A A

B B B
B B

Y z z X z t

Y z z X z t

= + +

= + +
A

B

                   (A.23) 

where 

0 1 2
1, ,A A AA A A

A A A A A A

cz z z
d d d

α β
β β β

−= = − = −
+ + +

         (A.24) 

                                    

0 1 2
1, ,B B BB B B

B B B B B

cz z z
d d d

α
B

β
β β β

−= = − = −
+ + +

        (A.25) 

Substituting these functions in the Wardrop equilibrium conditions yields, after some 

manipulations, the reduced-form demands for transit transport. We find: 

                                      0 1 2 3 4
r A A A A A
A A B A BX t tγ γ τ γ τ γ γ= + + + +                                          (A.26) 

                                      0 1 2 3 4
r B B B B B
B B A B AX t tγ γ τ γ τ γ γ= + + + +                                     (A.27) 

where the coefficients are given by 

 



 44

2
0 0 0

0

1

2

1
3

1
4

( ) ( )B A A
A

B
A

A

A B
A

B
A

b z z a bz T
N

b T
N

b
N

z b T
N

bz
N

γ

γ

γ

γ

γ

− + −=

 + = −

=

  +  = − 
  

=

B

                                

2
0 0 0

0

1

2

1
3

1
4

( ) ( )A B B
B

A
B

B

B A
B

A
B

b z z a bz T
N

b T
N

b
N

z b T
N

bz
N

γ

γ

γ

γ

γ

− + −=
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    (A.28) 

In these expressions , and T z . Since, 

using (A.24)-(A.25), the T  are easily shown to be positive, it immediately follows that N>0. 

Therefore, we have 

A B AN bT bT T T= + +
i

1 1(1 ), (1 )A A B
A BTβ β= + = +

                                            . 1 2 3 40, 0, 0, 0A A A Aγ γ γ γ< > > <

                                            . 1 2 3 40, 0, 0, 0B B B Bγ γ γ γ< > > <

Note that the reduced form demand functions have a straightforward structure. More 

precisely, observe that the coefficients of the local and the transit taxes are directly related in 

the following simple manner (i=A,B): 

                                                                 3 1

4 1

i i

i i

z

z

γ γ
γ γ

=

=
                                                         (A.29) 

Moreover, using (A.24)-(A.25) it immediately follows that − <  so that: 11 iz < 0

                                                                  
3

4 2

i i

i

1

i

γ γ

γ γ

<

<
                                                        (A.30) 

Finally, note that reduced form demands for local traffic are obtained by inserting the 

demands for transit (equations (A.26)-(A.27)) into system (A.23). 

The reaction functions are derived as follows. Using the linear demand and cost functions in 

the optimal tax rules for country A derived in Appendix 1, we find after some algebra: 

                                       (A A A At Y X )β= +                                                                          (A.31) 
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                                       A A A AYτ AXβ ρ= +                                                                        (A.32) 

where  

                                         
B

A A B

bT
b T

ρ β= +
+

 

Finally, substituting (A.23), (A.26) and (A.27) into (A.31)-(A.32) and solving for the tax rates 

in A as sole functions of the two tax rates in B yields, again after some algebra, 

                                                          

2 4

1 1

2 4

1 1

1 1( ) ( )
2 2
1 1( ) ( )
2 2

A A

A A B BA A

A A
t A

A A BA A

c t

t c K K t

τ γ γτ τ
γ γ
γ γτ
γ γ

= − −

= + + A
B

          (A.33) 

where all coefficients have been defined before, except 

                                                          ( )

0
0

1

0 0 1 0
1

1

1 1

1
2

1
2

1 (1 )

A
A

A A A

A
t A A A A A
A A A A A

A A
A

A A A

c z

Kc z T z
T

TK
z T

τ γβ
γ

β β γ γ
γ

γ
γ

 
= − 

 

 = + +  

=
− +

 

Moreover, for purposes of the interpretation it is useful to note that . This is 

easily seen to be the case as follows. First, 

1 0AK− < <

                                                   1
( ) ( )A B A B

A A
A B A

T b T T b T
N bT bT T

γ + += − = −
+ + BT

0

T  

which implies . This in turn implies . 11 A AT γ− < < 1 0AK− < <

 Importantly, since the tax competition problem considered in this section is a game with four 

tax rates, it is not obvious to prove the existence and uniqueness of Nash equilibrium in this 

general setting. Fortunately, the linear structure of the problem allows us to reduce the four-

dimension game into a policy game in two dimensions; moreover, existence and uniqueness 

then immediately follow. To see this, consider the structure of the reaction functions (A.33) 

and note that the local and transit tax rates of each country can be written as a function of the 

same linear combination of the tax rates of the other country. Specifically, define: 
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1

1
A A B

B B A

z t

z t

π τ
π τ

= +

= +
A

B

  

Substituting this result in (A.33) we obtain: 

 
A

A A B
t A A

A A B

c r

t c r K

ττ π
π

= −

= −
  

where 2

1

1
2

A
A

Ar γ
γ

= . Similar expressions result for region B. Noting that only positive  make 

economic sense, we can then reformulate (A.33) and its equivalent for B as follows: 

iπ

 
A A

A B
B B

B A

s p

s p

π π
π π

= +

= +
 

where 

 

1

1

1

1

(1 )

(1 )

A B t
A A

B A t
B B

A A B

B B A

s c z c

s c z c
A

B

p r z K

p r z K

τ

τ

= +

= +

= − +

= − +

 

Simple algebra, using the definitions given before and realising that , then shows 

that the reaction functions have a positive intercept, are upward sloping, and have a slope less 

than one.   

1 0iK− < <

Finally, solving the reaction functions for the original four tax rates yields the Nash 

equilibrium in function of the various coefficients that describe cost and demand responses. 

The solution can be written as: 

1 1 1 1 1

1 1

1 (1 ) (1 )

1 (1 )(1 )

B A B A B A t B A B A B A t A A
A A B

A A B B A A B

c K z z r r K c K z z r r c r c r

r r K z K z

τ τ

τ
     − − + − − −     =

 − − − 

B z    

1 1

1 1

(1 ) 1 (1 )

1 (1 )(1 )

B A A B A t B A A B A B t A A A
A A B

A A B B A A B

c K z r r K c K z r r c r r c r z K
t

r r K z K z

τ τ      − − + − − + +      =
 − − − 

1B   

where 2

1

1
2

i
i

ir γ
γ

= . Analogous expressions result for country B.  
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2. The case of uniform tolls 

We follow the same steps and use the same definitions as in the previous case. The reduced-

form demands for local transport conditional on transit and the local tax are given by 

0 1 2

0 1 2

A A A
A A

B B B
B B

Y z z X z

Y z z X z

θ
θ

= + +

= + +
A

B

) B

                     (A.34) 

The reduced-form demand functions for transit are now the following: 

                                      0 1 3 2 4( ) (r A A A A A
A AX γ γ γ θ γ γ θ= + + + +                                         (A.35) 

                                      0 1 3 2 4( ) (r B B B B B
B BX ) Aγ γ γ θ γ γ θ= + + + +                                         (A.36) 

where the coefficients are defined as above.  

To obtain the reaction function for region A, use  

 
2 1 1 3

1 3

( )

0

r
A A A AA

A
r

A AA

A

Y z z

X

γ γ
θ

γ γ
θ

∂ = + + <
∂

∂ = + <
∂

0
  

in the optimal tax rule derived in Appendix 2:  

                  
r

A A
A A r r

A AA

A A

C XY
Y XV

θ

θ θ

∂= −
∂ ∂∂ +
∂ ∂

 

Solving explicitly for the optimal tax, we find the reaction function: 

                                                  32

1 1

tuAtuA

A BtuA tuA

cc
c c

θ = + θ

3 )

                                                         (A.37) 

where 1 1 1 11 ( )(tuA A A A A
A Ac z zβ η γ γ= − − + +  

  2 1 0( )tuA A A A
A A Ac zβ η γ β= + + 0z

4 ) 3 1 2( )(tuA A A A
A Ac zβ η γ γ= + +  

and 
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1 1 3 2

1 0
(1 )( )A A A A Az z

η
γ γ

= − >
+ + +

 

Tedious algebra shows that ( 1
A

A Azβ η+ )>0 so that : the reaction functions are 

upward sloping. Moreover, a Nash equilibrium indeed exists. This requires the condition:   

3 10, 0tuA tuAc c> >

3 3

1 1

1
tuA tuB

tuA tuB

c c
c c

<  

which, using straightforward algebra, can easily be shown to hold. 

3. Local tolls only 

Again we follow the same steps and use the same definitions as in the section for the 

differentiated tolls. The demands for local transport conditional on transit and the local tax are 

given by 

0 1 2

0 1 2

A A A
A A

B B B
B B

Y z z X z t

Y z z X z t

= + +

= + +
A

B

B

                     (A.38) 

Reduced-form demands for transit are:  

                                      0 3 4
r A A A
A AX t tγ γ γ= + +                                                                (A.39) 

                                      0 3 4
r B B B
B B AX t tγ γ γ= + +                                                           (A.40) 

To get the reaction function for country A, use the above specifications in the optimal tax rule  

 (1 )

r
A

A A
A A r

AA

A

Y
C tt Y

XV
t

∂
∂ ∂= +

∂∂
∂

 

The result turns out to be: 

                                                    32

1 1

tlAtlA

A BtlA tlA

cc
c c

= +t                                                      (A.41) t

1 3 )zwhere 1 21 (tlA A A A
A Ac zβ δ γ= − +  

 2 0( )tlA A A A
A Ac z z1 0β δ γ= +  
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4 3 1
tlA A A

A Ac zβ δ γ=  

Again, simple but long algebra shows that the slope of the reaction function is positive; 

moreover, assuming all types of transport exist in the equilibrium, the existence of a Nash 

equilibrium can be shown. This follows because one shows that 3 3

1 1

1
tlA tlB

tlA tlB

c c
c c

< . 
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