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Abstract

This paper studies mutual consent social networks in which individuals imper-

fectly monitor others’ network ties and have incomplete information about the

benefits of network participation. I introduce the Conjectural Pairwise Stabil-

ity concept, which generalizes Jackson and Wolinsky’s (1996) Pairwise Stability

concept to allow for limited observation, and apply it to a specific mutual con-

sent network formation game. While limited observation generally leads to the

existence of less e cient stable networks, I find that it can also lead to the exis-

tence of e cient stable networks. Moreover, stability restrictions considered in

previous work lose their refining power as observation becomes more limited.
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1 Introduction

Social networks underlie many economic and social activities, such as the spread of valuable

information or the trade of goods and services.1 These social networks generally have

two common features. The first feature, that network ties usually require mutual consent,

is widely acknowledged in game theoretic studies of social networks [e.g., Jackson (2003)].

Examples of social ties that require mutual consent include friendship networks and business

connections. On the contrary, the second feature, that an individual usually only observes a

local area of her network, has received very little attention in the game theoretic literature.

This is true despite the empirical work (largely by sociologists) which shows that individuals,

in general, only observe their own direct ties and the ties of their network neighbors [Laumann

(1969), Friedkin (1983), Kumbasar, Romney, and Batchelder (1994), Bondonio (1998), and

Casciaro (1998)].

Since social networks exist in abundance, limited observation obviously does not prevent

them from forming, nor does it prevent individuals from benefiting from others’ network ties

even when not aware of them. It might, however, lead to the persistence of networks that

would not persist under full information. Consider the following example. Unemployed

Amy learns of a job opening from her friend Barry, who learned of the job from his cousin

Clint, who just happened to learn of the job from his neighbor Dinah. If Amy does not

observe Clint interact with Dinah, then she might not know the origin of the job news. Of

course, even if Amy knew that Clint’s news came from Dinah, Amy still might not know

what other job news Dinah has. In game theoretic terminology, Amy imperfectly monitors

Clint’s links and has incomplete information about the potential value of linking to Dinah.

Although Amy benefits from her connections despite her limited information, she is possibly

better o if she formed a tie directly with Dinah, since Dinah may have other job news that

did not work its way through Clint and Barry. In fact, if Amy knew more about Dinah, such

as whether Dinah works in a particular industry, then Amy might prefer to communicate

1Examples and references are numerous, e.g., see Conley and Udry (2001) on learning about produc-
tion techniques through informal networks in developing countries, Calvó-Armengol and Jackson (2004) on
learning about job openings through contacts, and Kranton and Minehart (2001) on buyer-seller networks.
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directly with Dinah instead of indirectly, but without knowing anything else about Dinah,

Amy may decide to not initiate such communication. An ine cient network might persist

because of Amy’s limited information.

This paper presents a game theoretic examination of such settings. I first introduce

an original network stability concept, Conjectural Pairwise Stability (CPS), for the study

of limited observation in mutual consent networks. CPS generalizes the Pairwise Stability

(PS) concept introduced by Jackson and Wolinsky (1996). A network is PS if no single link

created by a pair of players improves each deviator’s utility, and if any removal of a link

by a player reduces her utility. Implicit in the PS concept is that each individual has full

information about the change in her utility arising from any single link deviation, and, as

such, the PS concept is not appropriate if individuals have limited information about the

network. The CPS concept generalizes PS by relaxing the restriction that individuals’ beliefs

about the network must be correct. More precisely, the CPS concept allows for networks to

be stable when each player believes that any single link deviation is utility decreasing and

when each’s beliefs are not contradicted by available information about the network. Thus,

the CPS concept allows players to have incorrect conjectures in stable networks, so long as

they have no information to contradict those conjectures.

After presenting some basic network notation in Section 2, Section 3 formally defines

CPS and relates it to PS. Section 4 then applies the CPS concept to the connections

model first studied by Jackson and Wolinsky (1996) and later extended by Johnson and

Gilles (2000) and Jackson and Rogers (2005) to include heterogeneity in link benefits and

costs. As in the connections model studied by Johnson and Gilles (2000), I allow for

heterogeneity in the benefits of forming links. However, unlike previous work, I also allow

for imperfect monitoring of others’ links and incomplete information about the benefits of

forming links. To formally characterize this informational structure, I use the -link

observation information structure introduced by McBride (2005). Each observes network

ties that are or fewer links away from her, and observes the player types of those players

within links from her. This concept mimics the limited observation present in actual

networks and allows me to examine how the set of network equilibria changes as players’
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observational capabilities ( or ) increase or decrease.

Section 4 presents two new results. First, limited network observation in a mutual con-

sent setting leads to the persistence of ine cient networks that would not persist under full

observation. This result compares directly with a similar result for non-cooperative networks

[McBride (2005, 2006)], thereby showing that the primary impact of limited observation is

robust to the network formation setting (i.e., whether non-cooperative or mutual consent).

Second, limited observation, in some settings, actually leads to the existence of stable net-

works that are more e cient than those under full observation. In e ect, an individual’s

limited observation may lead her to unknowingly choose actions that are individually detri-

mental but socially beneficial. This result contrasts with the findings in McBride (2005,

2006) in which limited observation only hinders e ciency.

Because the CPS concept imposes a minimal set of conditions for stability, Section 5

investigates the impacts of two refinements that have been considered in the networks lit-

erature: common knowledge of rationality and coalitional deviations. This paper’s third

new result is that the refining power of each refinement diminishes as players’ observation

becomes more limited. Under certain conditions, imposing common knowledge of ratio-

nality does not change the set of CPS networks when observation is very limited, but it

does change the set of CPS under higher levels of observation. This finding relates directly

to Rubinstein and Wolinsky’s (1994) Rationalizable Conjectural Equilibrium refinement of

Conjectural Equilibrium for non-cooperative games with imperfect monitoring. Similarly,

the refining power that comes by considering coalitional deviations is greater under higher

levels of observation. In short, natural refinements of the CPS concept do not greatly refine

the set of CPS networks when individuals have severely limited network information.

The general contribution of this paper is the introduction and application of the CPS

concept to the study of mutual consent network formation games with imperfect monitoring

and incomplete information. This concept can be applied to other mutual consent network

games, thereby allowing researchers to study the relationship between stability, e ciency,

and observation in other mutual consent network settings. The more specific contribution

of this paper relates to the new findings described above, which yield new insights into our
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understanding of network formation. The basic impact of limited observation on social

networks is largely independent of the network setting (mutual consent or non-cooperative)

in that it always leads to an increased set of stable networks. Moreover, given that standard

refinements lose power as observation becomes more limited, this paper suggests that the

e ects of limited observation are not so easily overcome. That said, this can actually be

a good thing in settings in which e cient networks might only be stable under limited

observation. I conclude the paper by briefly discussing how future research can build on

these contributions.

2 Network Basics

Consider a set of players = {1 }. In what follows, let each player represent a node

in a graph or network (I use “graph” and “network” interchangeably.) Let each arc (i.e.,

link or tie) in the represent a binary or pairwise relation between the respective two nodes.

Let be the set of all possible networks, i.e., the set of all possible combinations of binary

relations. Let denote that there is a tie between and in , while implies no

direct tie. Because mutual consent networks are studied here, these ties are non-directed in

that .

Let + represent the graph resulting from the addition of a link between and to

while represents the graph if the link is removed.

Say that there is a path between and if either or if there exists players

1 2 , distinct from one another, such that { 1 1 2 2 3 } . Let ( ) be

the distance in ties between and along the shortest path between and in graph . For

convenience, let ( ) = if , and let ( ) = 0.

Let ( ) be the set of players in ’s component ; that is, the set of players that

each have a path to : ( ) = { | ( ) }. Let = { | } be the set
of players with whom has a direct link.

Let ( ), : R be the value function that assigns a real number value to each

graph, and let be the set of all value functions. As will be seen in the model studied later,
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the function can be thought of as a state variable will determine, in part, each player’s

utility. Let : × R be ’s utility function.

I follow Jackson and Wolinsky (1996) and say that is e cient given if ( ) ( 0)

for all 0 . It is often the case (as in the model below) that ( ) =
P

( ), so

that e ciency would then represent the sum of utilities.2

3 Conjectural Pairwise Stability

Many social networks of interest require the mutual consent of both parties for a bilateral tie

to exist. Applying non-cooperative equilibrium concepts to study mutual consent network

is not possible without additional assumptions about link proposals and acceptances. In

acknowledgment of this fact, Jackson and Wolinsky (1996) introduced the notion of Pairwise

Stability (PS) as a coalitional stability concept for networks which considers only two-player

coalitional deviations.

Definition 1: Graph is Pairwise Stable with respect to and

{ } if

(i) for all , ( ) ( ) and ( ) ( ), and

(ii) for all , if ( ) ( + ) then ( ) ( + ).

Condition (i) requires that each player of an existing tie is better o with the tie than without

it. Under condition (ii), if one player strictly prefers a new tie and the other is indi erent,

then that tie will be formed.

Jackson (2003) acknowledges that the advantage of the PS concept is its ease of use in

application, and that its primary limitation is that it allows for only bilateral deviations.3

Nevertheless, PS turns out to be a strong enough notion of stability for many networks of

interest, and although I revisit this issue of multi-player deviations in Section 5, this paper’s

2A Pareto e ciency concept may be considered more appropriate in networks without side payments like
that studied herein, but I follow Jackson and Wolinsky’s usage for easier comparison.

3Dutta and Mutuswami (1997) allow for coalitions of more than two players, and Bienenstock and
Bonacich (1997) discuss using the core concept. Goyal and Vega-Redondo (2005) use a di erent refine-
ment that allows a pair of players to simultaneously remove and add links.
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main concern is with a di erent aspect of the concept. While PS is too weak in allowing for

only single bilateral deviations, it is also too strong in requiring individuals to have correct

beliefs about the current state of both and .

I define a generalization of PS that allows individuals to have incorrect beliefs about and

. In essence, I combine PS with existing Conjectural Equilibrium concepts. A Conjectural

Equilibrium is one where each player chooses a best response to her beliefs about the other

players’ actions, and where her possibly incorrect beliefs are not contradicted by her available

information about others’ actions.4 McBride (2005) generalized this concept to further allow

for incomplete information (he calls his concept Generalized Conjectural Equilibrium).

To consider incorrect conjectures requires additional notation. Formally, let

4 ( × ) be a probability distribution over the possible states of the world ( ). Call

’s beliefs. Also, let : × , be ’s message or signal function such that each

state of the world yields a message in message space .

As defined, the full information settings is a message function profile such that for each ,

( ) 6= ( 0 0) for any distinct ( ) ( 0 0) { × }, i.e., each state of the world
gives a unique message so that the state is perfectly distinguishable. In general, however,

it is possible that two or more states of the world give the same signal to .

Following the literature [Gilli (1999)], I place two initial restrictions on .

Assumption 1: If ( ) = ( 0 0) then ( ) = ( 0 0).

Assumption 2: Fix 0 .

(i) If and ( ) = ( 0 0) then 0, and

(ii) If and ( ) = ( 0 0) then 0.

The idea behind Assumption 1 is that each player (e.g., after some network formation

process) should learn her realized payo , and so her set of information in an equilibrium

should include information about that payo . Assumption 2 says that must be aware of

4For an extended discussion of the Conjectural Equilibrium concept, see Battigalli, Gilli, and Molinari
(1992).
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her own decision to give consent or not give consent to each possible bilateral tie, and this

must be reflected in her signal.

We can now define a Conjectural Pairwise Stable (CPS) network.

Definition 2: Graph is Conjectural Pairwise Stable (CPS) with respect

to value function , utility functions { } , message functions { } ,

and beliefs { } if

(i) for all , ( )
P

( 0 0) × ( 0 0) ( 0 0) and ( )P
( 0 0) × ( 0 0) ( 0 0),

(ii) for all , if ( )
P

( 0 0) × ( 0 0) ( 0 + 0) then

( )
P

( 0 0) × ( 0 0) ( 0 + 0), and

(iii) for each , ( 0 0) = ( ) for any ( 0 0) × s.t. ( 0 0)

0.

In words, a network is CPS if (i) each side of each existing bilateral tie believes she is

better o keeping the tie, (ii) at least one party of any additional tie believes she is strictly

worse o by forming the new tie, and (iii) no player’s beliefs are contradicted by her signal.

Holding the value, utility, and message functions fixed, it is often possible that two (or

more) di erent beliefs profiles { } can be combined with to make a CPS. Thus, it will

often be useful to consider the set of CPS networks as the set of all for which there

exist beliefs that sustain as a CPS. With this in mind, an issue of primary interest is how

the set of CPS networks under one profile of message functions compares with the set of

CPS networks under another message profile. In general, we cannot say anything without

knowing the specific relationship of those two message function profiles. One special instance

for which we can say something concrete is when one message function profile yields at least

as much information as another profile.

Definition 3: Fix and { } . Say that message function profile { }
hasmonotonically more information than { 0} , denoted { } { 0}
if
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(i) 0 ( ) 6= 0 ( 0 0) ( ) 6= ( 0 0) for any ( ) ( 0 0)

{ × } for all , and

(ii) there exists ( ) ( 0 0) { × } such that 0 ( ) = 0 ( 0 0) and

( ) 6= ( 0 0) for at least one .

Condition (i) says that if the 0 message functions yield di erent signals under two states,

then under , which is more informative, they must also yield di erent signals. Condition

(ii) states that there must also exist two states that are distinguishable under but not under

0. Of course, we can similarly define a message function profile that has monotonically

less information than another profile.

Remark 1 immediately follows.

Remark 1: Fix and { } , and consider { } and { 0} such that

{ } { 0} . Then any CPS under { } is also a CPS under

{ 0} , but the converse is not necessarily true.

The logic behind Remark 1 is straightforward. Changing message functions while holding

the value and utility functions fixed only changes the restrictions placed on beliefs in a CPS.

Any restriction placed on beliefs under { 0} will also restrict beliefs under { } , but

{ } , because it contains more information, will place additional restrictions on beliefs

not placed on beliefs under { 0} . Thus, if the network meets the stricter requirements

for CPS under { } , it will certainly meet the requirements for CPS under { 0} , but

if a network meets the CPS conditions under { 0} it might not meet the CPS conditions

under { } . A further implication of Remark 1 is that any PS network is a CPS network

under any message function profile. The full information message function profile provides

monotonically more information than any other profile.

One last note deserves mention. Like the Conjectural Equilibrium concept, the CPS

concept does not place any restrictions on beliefs other than that they are not contradicted by

available information. The lack of additional restrictions matches, in spirit, the motivation

for this paper. If individuals have very limited information about their network, it is not
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immediately obvious what additional restrictions should be placed on their beliefs. However,

the lack of restrictions does potentially allow for a large set of stable networks. I return to

this issue in Section 5.

4 The Connections Model

In this section, I use the CPS concept to study the relationship between network observation

and network stability in a version of Jackson and Wolinsky’s (1996) connections model.

After presenting the basic model and describing features of PS networks, I address the issue

of limited observation, and then present the main analytical results. In my analysis, I

will not fully characterize the set of stable networks, but will instead identify particular

properties of the set of stable networks under di erent levels of observation. My goal is to

make substantive–but not necessarily exhaustive–comments about how the set of stable

networks changes as observation changes.

4.1 The Basic Model

Suppose links represent social relationships that yield benefits such as favors, information,

emotional support, etc., and the value of these benefits will depend on the characteristics

of the person linked to. Formally, let = {1 } be the set of individuals, and let
(0 ) represent the inherent value of individual to all others. Ties are the only way

to access others’ valuable benefits, yet forming a tie is costly in that each side of the tie pays

cost (0 1]. This cost represents the investment, opportunity cost, etc., of forming and

maintaining the link.

An individual receives benefits from her direct ties, but she also receives benefits from

indirect relationships, although the benefits of an indirect relationships diminish in the dis-

tance of the relationship. This is reflected in the following payo function:

( ) =
X
6=

( )
X
s.t.

where , 0 1, measures the decay in benefits.
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For notational convenience, let = ( ) be the profile of players’ types, and let be

the set of such profiles. Thus, the state of the world is characterized by a ( ) combination.

Figure 1(a) illustrates one possible network with = 5. There is one multi-player

component consisting of everyone but player 3, who is isolated. Players 1 and 2 have

two direct links, player 4 has one direct link, and player 5 has three direct links. If =

(1 1 2 2 2) = 1
2
, and = 1, then we can calculate 1, 3, and 5’s payo s as follows:

1 = ( 2 + 5) +
2 ( 4) | 1 ( )| =

1

2
(2 + 2) +

µ
1

2

¶2
(2) 2 (1) =

1

2

3 = 0

5 = ( 1 + 2 + 4) | 5| =
1

2
(1 + 1 + 2) 3 (1) = 1

Note that an individual, such as player 1, can receive benefits from both her direct links and

any indirect links, although the benefits are decreasing in distance due to decay. It may

also be better to remain isolated than to be in a component, e.g., isolated player 3 is better

o than player 5.

There are many reasons to study this model. First, it captures generic elements of

many actual social networks: individuals benefit from direct ties; individuals also benefit

from indirect ties, although the benefits do diminish in distance; and individuals must exert

a cost to maintain relationships. Second, a symmetric version of this model has already

been examined by Jackson and Wolinsky (1996). They consider the case of homogenous

types = 1 for all , perfect monitoring of links, and complete information of types. My

model is a natural generalizes the setting to include heterogeneous types.5 Finally, allowing

for heterogenous types is necessary to make an examination of incomplete information non-

trivial.

4.2 PS Networks

Before turning to limited observation, I first examine PS networks (i.e., the set of CPS

networks under full information). Some further terminology and notation will prove useful.

5Johnson and Gilles (2000) and Jackson and Rogers (2005) also consider heterogeneous types in the
connections model, yet they do not consider limited observation.
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If
( 2)

, then say that is very-high-valued, and denote it type category VH. If

( 2)
, then say that is high-valued, H. If , then say that is low-valued,

L. Summarizing: ¡
2
¢

These type categories have useful properties. If is linked to and is low-valued with

no other links, then is better o removing her link with . Conversely, if were high-

valued or very-high-valued and with no other links, then is better o maintaining that link.

Finally, if there is a path between and , is very-high-valued, but and are not directly

connected, then, as will be shown in Proposition 1(i), is still better o being directly linked

to .

Also, let be the marginal benefit of link to holding fixed, so that =

( + ) ( ) if and = ( ) ( ) if .

I can now describe some properties of PS networks.

Proposition 1: Fix , and consider full information.

(i) For any that are very-high-valued, then any PS must have .

(ii) If all players are very-high-valued, then the unique PS network is the

complete graph.

(iii) Any PS network has at most one multi-player component in which any

isolated individual is low-valued.

(iv) Any low-valued individual in a PS network cannot be a stem with | | =
1.

(v) The empty network is PS only if 1 or more individuals are low-

valued.

Proof: (i) Suppose the contrary, i.e., there exists PS with such

that
¡

2
¢

and
¡

2
¢

. A pairwise deviation that adds to

yields the smallest marginal increase in utility when already receives ’s

benefits through another link such that is two links away. In this case, the

12



marginal benefit to of the direct link is
¡

2
¢
, and this is greater than

by assumption. Since ’s marginal benefit of the link are identical, both want

to make the link, which violates PS.

(ii) Follows from (i).

(iii)6 Consider pairwise stable with two multi-player components which

includes and which includes . Since is pairwise stable, it must be that

0. Since and are in the same component, it follows that 0,

since will also receive at least 2 0 from the indirect link to which is not

included in . By similar logic, 0. This contradicts pairwise

stability, since both and are strictly better o forming a link. That any

isolated player must be low valued follows directly.

(iv) Follows directly since any is strictly worse linking to an isolated player

with .

(v) Follows from (iv). ¤

Figure 2 illustrates various parts of Proposition 1. Figures 2(a)-(c) focus on H or VH

players in PS networks. Figure 2(a) is not PS since the top left H and the bottom left H are

both strictly better o linking to each other (Proposition 1(i)). Figure 2(b) is also not PS

since it has two VH players not directly connected. Figure 2(c), however, is PS since all VH

players are directly connected and H is not isolated. Figures 2(d) illustrates a network that

violates Proposition 1(iii). Any multi-player component must have total value greater than

or equal to an H player, and so having multiple multi-player components is akin to having

multiple H or VH players, i.e., each cannot be isolated in a PS network if there are more

than one of them. The top H and top VH are both better o linking to each other. Figure

2(e) is not PS since L is a stem (Proposition 1(iv)). Finally, Figure 2(f), an empty network,

is PS because the Ls will not link to the other Ls, and even though they want to link to H,

H will not link to them (Proposition 1(v)).

6This proof uses logic from the proof of Jackson and Wolinsky’s (1996) Proposition 2(i).
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As I show below, each condition described here for PS networks can be violated in CPS

networks when there is limited network observation. However, we must first specify the

observational environment.

4.3 -link Observation

Applying the CPS concept to the connections model requires an explicit characterization of

players’ message functions. I will use the formal notion of -link observation introduced

by McBride (2005) that depicts imperfect monitoring and incomplete information in social

networks.7 Given some ( ) combination with -link observation, observes all links

that are within distance links, and she observes for all who are within distance links.

I will initially assume 1 and 0 . These are natural restrictions. An individual

should know with whom she has direct links at the least ( 1). She should only be able

to observe ’s type if she observes interact in the network ( cannot exceed ). At the

same, observing ’s links does not necessarily imply that ’s type can be observed ( can

exceed ).

Figure 3(a) illustrates what player 1 observes in the least observation setting of = 1

and = 0. The links within the dotted boundary are observed by 1, and the line under

a player denotes that 1 observes that player’s type. Player 1 observes only her own direct

links and her own type. Figure 1(b) illustrates what 1 observes with = 1 and = 1,

and Figure 1(c) illustrates what 1 observes with = 2 and = 1. Increasing either or

or both leads to monotonically more information, but so long as and are both finite, a

player can never observe the links or type of a player in another component. Moreover, it

will often be the case that two players will observe di erent parts of the network. Figure

1(d) illustrates what player 2 observes with 1/0-link observation, which di ers from what 1

observes under 1/0-link observation.

I use the -link observation signal structure for various reasons. First, -link ob-

servation, by design, mimics to some extent the observation present in actual networks.

7McBride’s (2004) -link observation generalizes the -link observation developed in McBride (forth-
coming) for games with only imperfect monitoring (and complete information).
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Empirical work by sociologists finds that individuals have limited “horizons of observability”

in that they are more likely to correctly perceive others’ ties or personal characteristics if

they are closer in the network [Laumann (1969), Friedkin (1983), Kumbasar, Romney, and

Batchelder (1994), Bondonio (1998), Casciaro (1998)]. Second, the -link observation

notion has already been used by McBride (2005) in the study of non-cooperative network

formation under limited observation. In fact, it is the only existing formal game theoretic

signal structure for network games with limited network observation. Using it here thus

allows me to compare my results with those of the earlier research.

Finally, I note that I can use this concept even though it was first presented in the context

of a non-cooperative network model. The concept defines signals as a function of the graph

and value function and not the strategic nature of the link formation process.

4.4 CPS Networks

We now turn to an examination of CPS networks, and one final new notation will be used

in our analysis. Define to be the expected benefits that go to from the link given

’s beliefs in ( ). Formally,

=

½ P
( 0 0) × ( 0 0) ( ( 0 + 0) ( )) ifP
( 0 0) × ( 0 0) ( ( ) ( 0 0)) if

.

This is the expectation version of defined in Section 4.2, so that and are equivalent

if assigns probability 1 to the true state .

The next result examines the least information setting of = 1 and = 0. Surprisingly,

any network that makes each player no worse o than being isolated will be a CPS network.

Proposition 2: Fix and suppose 1/0-link observation. Then is a CPS

network if and only if ( ) 0 for all .

Proof: (Necessity) Consider that is a CPS network with associated beliefs

profile { } and with ( ) 0 for some . From the definition of for
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:

=
X

( 0 0) ×
( 0 0) ( ( ) ( 0 0)) if

=
X

( 0 0) ×
( 0 0) ( )

X
( 0 0) ×

( 0 0) ( 0 0)

= ( )
X

( 0 0) ×
( 0 0) ( 0 0) by CPS condition (iii).

By CPS condition (i), the first term on the RHS is weakly greater than the second

term on the RHS. This implies, first, that the LHS is weakly positive: 0

for all . It also implies that the LHS is weakly less than the first term on

the RHS: ( ) for all . Putting these conditions together, we

get a contradiction: 0 ( ) 0.

(Su ciency) Consider in which ( ) 0 for all . I now construct

for each to sustain as CPS. First suppose | | 1. Consider a network 0

which has for each and no others links, e.g., is the center of a star

network. Consider 0 as follows: 0 = ; 0 = ( )+[ ]
| | = ( )

| | + for all

, which means that all of ’s payo is spread evenly among all ; and

0 = 0 small for all , 6= . Since ( ) 0, it follows that 0 ,

so each 0 is high-valued. For each with | | 1, respectively, choose such

that probability 1 is assigned to ( 0 0). With these beliefs for , she will want

to remain the center of the star 0, and this is true for all . Thus, these beliefs,

combined with , meet the CPS conditions (i)-(iii) for each .

Now consider with = . Consider 0 such that 0 = and 0 = 0

small for all 6= . For any with = , choose such that probability 1 is

assigned to ( 0 0), where 0 is the empty network with no links. These beliefs,

combined with , meet the CPS conditions for . ¤

To state this result precisely: with 1/0-link observation, for any network in which each

player’s payo is weakly greater than being isolated, there exists a profile of beliefs for each

that will sustain as a CPS network. The ( ) 0 condition is naturally interpreted
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as a participation constraint for , so the set of CPS networks is extremely large. Unlike

the set of (full information) PS networks, the empty network is always CPS under finite

and no matter the , while the empty network is PS only if at least 1 players

are low-valued. Even if multiple players are high-valued, an isolated player under 1/0-link

observation can incorrectly believe that everyone else is low-valued and isolated, and thus

not want to form any links. Remaining isolated is ’s best response given these beliefs, and

she receives no information to contradict her beliefs. Such incorrect beliefs are not allowed

in a PS network since is known. For similar reasons, CPS networks can have multiple

multi-player components since a player in one component may believe anyone not in her

component is low-valued and isolated, and high-valued and very-high-valued players may

miss opportunities to link to one another.

In fact, if all players are high-valued ( ), then the set of CPS networks is the set of

all possible graphs because any will meet ’s participation constraint. This “anything

goes” result demonstrates in an extreme manner the role that observation plays in network

stability.

A few examples will help illustrate these findings. The left-most network in Figure 4(a)

with an isolated H player can be sustained as CPS with the beliefs depicted in the center and

right networks: H believes that all others are low-valued and isolated (center), and the VHs

believe that the isolated H player is low-valued. Given these beliefs, each player is doing

her best action, and no player observed any information that contradicts her beliefs. Figure

4(b) is a network that has two multi-player components, and it is CPS if members of one

component think their component is the only component and that all others are low-valued

and isolated. The lack of payo increasing connections can be more extreme as in Figure

4(c), since the empty network can always be sustained as a CPS. Finally, Figure 4(d) depicts

a network with a low-valued stem that can be sustained as a CPS when the player linked to

that stem believes that the stem is not low-valued.

The large set of CPS networks under 1/0-link observation includes networks that are less

e cient than those in the set of the PS networks. If two players are very-high-valued, then

it is both individually and socially optimal for them to be directly linked in a PS network,
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and they will be directly linked in any PS network. This connection is not guaranteed with

limited observation. The disconnected network in Figure 4(a) is CPS, but the unique PS

network for this profile of player types is the connected network in Figure 2(c). Thus, severe

observational limitations will generally lead to the existence CPS networks which yields lower

social utility that PS networks since players may not observe payo improving connections.

On the other hand, it might be possible that there is a CPS network that yields a higher

sum of utilities than does the PS network with the highest sum of utilities. Figure 4(d),

for example, is a CPS network under 1/0-link observation, but it is not PS since there is a

low-valued stem. The unique PS network would have the three VHs directly connected and

L isolated, but note that if the VHs have very large values, then the network in Figure 4(d)

would generate higher social utility than the PS network. In this case, limited observation

leads players to miss payo improving link removals.

That less e cient CPS networks arise as observation decreases matches the same finding

reported by McBride (forthcoming, 2005) in the context of a non-cooperative communication

network model. That more e cient CPS networks arise as observation decreases is a new

finding to the game theoretic literature on social networks. In retrospect, both findings

make intuitive sense. Decreasing observation allows players to maintain incorrect beliefs,

and this means that individuals can choose an action that is individually detrimental but

not known to be so. This individually detrimental action can be socially detrimental, as in

Figure 4(a), or socially beneficial, as in Figure 4(d).

Since increasing or leads to monotonically more information for each player, we know

from Remark 1 that increasing or will eliminate many, but not all, of the equilibria that

exist under 1/0-link observation. Proposition 3 illustrates this fact by listing some features

of the set of CPS networks for generic (finite) and .

Proposition 3: Fix and suppose -link observation with and

.

(i) If 1 and 1, then any CPS must have no low-valued stems.

(ii) Consider a CPS in which there exists very-high-valued and such
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that ( ) . Then .

(iii) If there are at least four high-valued players, then the set of CPS

networks includes networks with multiple multi-player components.

(iv) The empty network is always CPS.

Proof: (i) Suppose the contrary, that CPS has a low-valued stem , i.e.,

, and is ’s only link. Because 1 and 1, must observe

that is low-valued and a stem, and this must be reflected in her CPS beliefs

. But given these beliefs, keeping her link with is not a best response, which

contradicts CPS.

(ii) Suppose the contrary, that CPS has s.t.
¡

2
¢¡

2
¢
, and ( ) , but where . Since ( ) , and

both see each other’s type, so each’s beliefs must assign the correct type to the

other. Each thus believes she is strictly better o by linking to the other, which

contradicts CPS.

(iii) Pick such that , , , and are high-valued, and any other player

6= can be either low- or high-valued. Construct such that it contains

and and no other links. Let and each assign probability 1 to ( 0 0)

where their link is the only link in 0, and where 0 has 0 = , 0 = , and

0 = for 6= . Let and each assign probability 1 to ( 00 00) where

their link is the only link in 00, and where 0 has 0 = , 0 = , and 0 = for

6= . Finally, let , for all 6= assign probability 1 to the empty

network and all others having value . No player’s beliefs are contradicted by

their observation, and each player’s links are individually optimal. Thus, is

CPS with multiple non-empty networks.

(iv) Let believe that assign probability 1 to a state in which all other 6=
be isolated and have . Because is isolated and and are finite, receives

no information to contradict her beliefs. Given these beliefs, believes she is

better o not forming any links. The CPS conditions are met for . Construct
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similar beliefs for all to complete the CPS. ¤

Propositions 3(i)-(ii) show how increasing observation can sometime hurt while at other

times help e ciency. With su ciently high observation, low-valued stems are observed

and cannot exist in a CPS even if they are socially optimal. Part (i) shows that slightly

increasing observation above 1/0-link observation is su cient for this to happen. Part (ii)

shows that increasing observation also allows very high-valued players to identify other very-

high-valued players in their component, thus leading them to make direct connections. Of

course, CPS networks can have very high-valued players not directly linked if the distance

between them is su ciently large.

Parts (iii) and (iv) illustrate more general features of CPS networks when players have less

than full information. For multiple multi-player components to exist in a CPS network, it is

necessary that the benefits to each player in each component must exceed the costs of being

in the component. Under full information, a player in each component knows she is better

o linking to the player in the other component, so multiple multi-player components cannot

exist in a PS network. When players do not observe other components, however, they will

not know of those beneficial link formations. Having four high-valued players is su cient

for multiple multi-player components to exist but not necessary. Wheel components made

of four or more low-valued players whose values are lower than but close to can also be

CPS. Finally, for similar reasons, the empty network is always CPS.

These findings add a new insight into the relationship between stability and e ciency.

Jackson and Wolinsky (1996) used the connections model to demonstrate how many e cient

networks are not stable. My results suggest that the tension between stability and e ciency

is potentially tempered by individuals’ observation, although not necessarily so. Since re-

ducing observation will generally lead to the existence of less e cient stable networks, obser-

vational limitations can hurt e ciency. This will necessarily happen if the e cient network

is PS. However, in some settings where PS networks are ine cient, reducing observation

can lead to the existence of CPS networks that yield higher social utility.

Whether observation helps or hurts e ciency thus depends on the particular profile of
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types . For example, when all individuals are very-high-valued, then the unique PS network

is the complete graph. Because this graph is also the unique e cient graph, any CPS graph

under limited observation (other than the complete graph) can only be ine cient. As shown

in Figure 4(d), however, the presence of low-valued players can yield a limited observation

with higher sum of utilities than the PS network.

5 Refinements of CPS

5.1 Rationalizability

Rubinstein and Wolinsky (1994) and Gilli (1999) acknowledge that the Conjectural Equilib-

rium concept for non-cooperative games does not require players’ conjectures to be justified,

and instead only requires that their conjectures not be contradicted by their signals. They

consider imposing common knowledge of rationality as a way to refine players’ beliefs so

that each player’s beliefs must reflect optimal play on the part of the other players. We

can impose common knowledge of rationality by assuming players commonly know and ,

that everyone has -link observation, and that everyone plays a best response to her con-

jectures. Individual must justify her beliefs about ’s beliefs and actions given her beliefs

about ’s signal, and must in turn rationalize her beliefs about ’s actions and beliefs given

her beliefs about ’s signal, and so on.

Whether this additional restriction on beliefs will refine the set of CPS in the connections

model will depend on how informative are the players’ signals.

Proposition 4: Fix .

(i) Suppose 1/0-link observation, and consider a CPS such that

for all with | | = 1 and ( )
¡ ¢ | |

| | 1 for all with | | 1.

Then is also rationalizable CPS.

(ii) Suppose = (perfect monitoring) and . Then there can exist

that are CPS but not rationalizable CPS.

(iii) Suppose -link observation with and . Then the
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empty network is always CPS and rationalizable CPS.

Proof: (i) Consider ( ) in which ( )
¡ ¢ | |

| | 1 for all with

| | 1. First consider isolated in . Let ( 0 0) = 1 s.t. 0 is empty,

0 = , and 0 = for all 6= . The CPS conditions are met for with

1/0-link observation. These beliefs about ( 0 0) can be rationalized as follows.

Let believe that ( 00 00) = 1 where 0 is empty and 00 = for all . Given

this belief by about ’s beliefs, ’s action is optimal, and his beliefs are not

contradicted by available evidence in ( 0 0). In a similar manner, rationalize

her beliefs about ( 00 00), and so on. We have thus constructed an infinite chain

of justification starting from isolated .

Now consider non-isolated with | | 1. In proving Proposition 2,

I showed that the CPS conditions were met for with | | 1 if assigned

probability 1 to the state ( 0 0) in which was the center of a star network that

consisted only of her links, where each 6= in the star had value 0 = ( )
| | + ,

and where all others were low-valued and isolated. I now show in 3 steps that

this belief yields an infinite chain of justification.

1. can rationalize who is isolated in 0. Consider with | | = 0 in
0. Because 0 is a star with center , these ’s are all those not in . For any

player who is isolated in 0, can rationalize ’s actions and beliefs as done in

the first paragraph of this proof. Thus, rationalizes ’s beliefs and actions in

( 0 0).

2. can rationalize who is linked in 0. Consider with | | 1 in 0.

Because 0 is a star, this includes all . Suppose assigns probability 1 to

state ( 00 00) with the following properties: let be the only link in 00; let 00 =

0 = ( )
| 1| + , which implies that 0 is high-valued or very-high-valued; let all

other 6= be low-valued and isolated; and let 00 = + (| | 1) 0 . (Note:

this value 00, when multiplied by and then subtracting , yields payo ( 0 0)

to .) As constructed, ( 0 0) = ( 00 00) and ( 0 0) = ( 00 00) under
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1/0-link observation. Thus, CPS condition (iii) is met for according to .

Moreover, ’s action is a best response given . CPS condition (ii) is met since

she believes any additional link with make her strictly worse o . CPS condition

(i) is met when she is better o remaining in 00 than removing her link to become

isolated, which yields payo 0:

( 00 00) 0¡
+ (| | 1) 0¢ 0µ

+ (| | 1)
( ) +

| |
¶

0

If | | = 1, then this condition becomesµ
+ (1 1)

( ) +
¶

0

Otherwise, if | | 1, then this condition becomes

( )
³ ´ | |

| | 1

These two conditions are exactly those listed in Proposition 4(i). Thus, can

justify this belief and action for .

3. We construct an infinite chain of rationalization. We now go one more

level in the chain of justification by showing that and with the beliefs (from 1

and 2) can rationalize the belief. can rationalize all others being isolated just

as her own beliefs were rationalized. ’s beliefs that has only one link with

can also be rationalized. First, any isolated player can be rationalized as above.

Second, can believe has beliefs 00 in which is the only link and in which 0

is high-valued.. By the same logic above, this can be rationalized if condition (i)

is met. Continuing the same logic over and over, we construct an infinite chain

of justification.

(ii) An example will su ce. Suppose = 4, = ( ), = + , 0 small,

for all . Then such that 12 and 34 , but no other links in is CPS
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but not rationalizable CPS. Let for = 1 2 assign probability 1 to ( 0),

where 0 =
¡
+ + 0 0

¢
. Similarly, let for = 3 4 assign probability 1

to ( 00), where 0 =
¡
0 0 + +

¢
. With these beliefs, is CPS.

These beliefs are not rationalizable CPS since 1 believes that 3 and 4 are

maintaining a link that is not worth maintaining. In fact, no beliefs can sustain

as rationalizable CPS. With = , player 1 sees the other component. If 1

believes that 3 is rational, then 1 must believe 3 maintains that link because it

makes 3 better o . But this means that for any rationalizable CPS beliefs for 1,

1 would also be better o linking with 4. By similar logic, 4 must believe she is

better o linking with 1.

(iii) Follow from logic similar to that used in examining the isolated players

in the proof of part (i). ¤

The key logic behind condition ( )
¡ ¢ | |

| | 1 in Proposition 4(i) is that

each non-isolated player must believe that she provides enough benefits to any neighbor

that can rationalize ’s choice to retain the link. The greater ’s value, the lower

’s payo from sources other than needs to be to satisfy the condition, while the lower ’s

value, the more must get from other sources. In fact, if each is high-valued (or very-

high-valued) so that , then the RHS of the condition is negative, which implies that

the condition is trivially satisfied by any CPS network, which we know from Proposition

2 must have ( ) 0. It follows that if all players are high-valued, then every CPS

network under 1/0-link observation is also rationalizable CPS. Hence, the “anything goes”

result for CPS networks under 1/0-link observation arises even with the common knowledge

of rationality refinement. In this case, the common knowledge of rationality restriction does

nothing to refine the set of CPS networks.

While rationalizability does little or nothing under 1/0-link observation, more informa-

tive signals implies further restrictions on others’ beliefs. This will, in turn, allow a player

to further refine her rationalization of the other players, thereby refining the set of CPS

networks. By increasing observation to perfect monitoring, for example, players observe
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other components. Attributing rational behavior to the members of the other component

implies that their participation is justified by su ciently high payo s. This logic leads a

member of each component to believe it must be worthwhile to link to that other compo-

nent. Thus, players must believe in profitable pairwise deviation. Nonetheless, adding

rationalizability cannot eliminate the empty network under finite and because isolated

players can rationalize their beliefs that others are low-valued.

These findings reveal a more general result that the e ect of adding common knowl-

edge of rationality is greater when the signals are more informative. A related finding

for non-cooperative games was made by Rubinstein and Wolinsky (1994), whereby common

knowledge of rationality yields the set of rationalizable strategies when signals are perfectly

uninformative (i.e., every state gives the same signal) but yields the set of Nash equilib-

ria when signals are perfectly informative (i.e., each state gives a unique signal). In the

connections model, increased informativeness of signals bring us closer to the set of PS net-

works. However, with finite and , the empty network is always rationalizable, so common

knowledge of rationality does not bring us entirely back to the set of PS networks.

5.2 Coalitional Deviations

A limitation of the PS and CPS concepts is that only single link, or two-person, deviations

are considered. In general, players may be allowed to deviate in coalitions of any size less

than or equal to .8 If so allowed, there may be some networks that can withstand

bilateral deviations but not deviations of more than two players. As with imposing common

knowledge of rationality, the e ect of allowing larger coalitions will be larger when players

observe more of the network.

Proposition 5: Fix .

(i) Suppose = (complete information). Then there can exist that

are CPS but not immune to large coalitional deviations.

8Dutta and Mutuswami (1997), for example, introduce the notion of Strong Stability which refines PS
by allowing coalitions of any size. This concept does have problems with existence, however, since in some
settings there may not be any networks that are impervious to any coalitional deviations.
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(ii) Suppose -link observation with and . Then there

exist beliefs such that the empty network survives coalitional deviations of any

size.

Proof: (i) An example with = illustrates. Suppose = 4 and = ,

0 small, for all . Since all players are low-valued, the empty network which

gives each player = 0 is CPS by Proposition 3(iv). However, a four-player

deviation to a wheel network gives to each a payo

= 2
³ ´

+ 2
³ ´

2

= 2 2

for all , which is greater than 0 if su ciently small. Since is commonly

known with = , this fact would be manifest in each ’s beliefs, so each

would be willing to participate in such a deviation.

(ii) Consider that assigns probability 1 to ( 0 0), where 0 is the empty

network, where 0 = , and where 0 =
( 1)

. Notice that cannot achieve

a payo equal to or greater than ( 1) 0, which is what she would

get it in the infeasible case in which she received the largest possible benefits,

( 1) by making the fewest number of links, 1. Thus, there is no state

in which is not isolated that gives a payo equal to or greater than that from

being isolated. Hence, if is isolated with beliefs , there is no deviation that

would participate in. This logic applies for all . ¤

In the case of larger coalitions, just as with adding common knowledge of rationality,

the empty network again survives the refinement. The reason is that an isolated player

with finite and receives no information about the others, and can maintain a belief that

a deviation of any size will make her strictly worse o . Increasing observation, say by

allowing complete information of types, does have refining power since there will be some

CPS networks that do not survive multi-player deviations.
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6 Conclusion

This paper examines mutual consent networks under limited observation. I introduce the

CPS concept for mutual consent social networks with imperfect monitoring and incomplete

information. I then use this concept to examine the role of limited observation in the stability

and e ciency of networks in the connections model. While limited observation in general

leads to the existence of ine cient networks that would not be PS under full information, it

may also be true that if PS networks are ine cient, then limited observation may actually

lead to the existence of more e cient CPS networks. I also report an “anything goes”

result such that, under certain conditions on players’ types, if observation is limited, then

any network that meets each player’s participation constraint is a CPS network. Finally,

I show that neither the common knowledge of rationality refinement nor the large coalition

deviation refinement is su cient alone to eliminate many CPS networks. These restrictions

lose refining power as observation becomes more limited.

Future research has many avenues to consider, two of which I mention here. First,

theoretical research should examine how e ciency and observation interact in other strategic

network formation games to determine the generality of the results presented here. The work

to date, which includes this paper and McBride (forthcoming, 2005), has commonly found

that decreasing observation leads to the existence of less e cient networks, and this finding

will likely hold true in most any network setting. The finding here that more e cient stable

networks might also arise is new to the literature, and whether it holds true in other settings

is yet to be determined. Can general statements be made about the e ciency-observation

relationship? For example, is there a class of positive externality games in which limited

observation only hurts e ciency? Future work should look for such general statements.

A second line of research is to study how individuals act to overcome their limited ob-

servation. Since social networks have structured markets and other social interactions for

centuries, individuals have likely developed mechanisms to overcome some of the ine ciencies

that can persist due to limited observation. For example, what mechanisms have arisen to

increase one’s credibility about statements to a neighbor about one’s own links? Since my re-
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sults indicate that predicting what networks will form is nearly impossible when observation

is very limited, a better understanding of the manner individuals overcome observational lim-

itations may be necessary for making sharper inferences about network structure. McBride

(2005) shows that observing others’ links has di erent implications for network formation

than does observing others’ types. Are individuals more successful in observing others’ types

or actions? Answering this and the other questions will bring us closer to understanding

how the social relationships that structure much of everyday social and economic activities

form and evolve over time despite informational limitations.
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    1

 (a) 5    2 x = 1, y = 0 

   4  3 

    1

 (b) 5    2 x = 1, y = 1 

   4  3 

    1

 (c) 5    2 x = 2, y = 1 

   4  3 

    1 

 (d) 5    2 x = 1, y = 0 

   4  3 



Figure 4 
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CPS with isolated H. 
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H’s belief. 

VH          VH 
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VH’s belief. 
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H          VH 

CPS with two multi-
player components. 
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H’s belief. 
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CPS with H and VH 
isolated.
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H’s belief. 

   

(d)

VH          VH 

L          VH 

CPS with L stem. 
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VH’s belief. 


