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Abstract

What generates persistence in in�ation? Is in�ation persistence structural?

This paper investigates learning as a potential source of persistence in in�ation. The paper focuses on the

price-setting problem of �rms and presents a model that nests structural sources of persistence (indexation)

and learning. Indexation is typically necessary under rational expectations to match the inertia in the data

and to improve the �t of estimated New Keynesian Phillips curves.

The empirical results show that when learning replaces the assumption of fully rational expectations,

structural sources of persistence in in�ation, such as indexation, become unsupported by the data. The

results suggest learning behavior as the main source of persistence in in�ation. This �nding has implications

for the optimal monetary policy.

The paper also shows how one�s results can heavily depend on the assumed learning speed. The estimated

persistence and the model �t, in fact, vary across the whole range of constant gain values. The paper derives

the best-�tting constant gains in the sample and shows that the learning speed has substantially changed

over time.
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1. INTRODUCTION

What creates persistence in in�ation? Is in�ation persistence a structural characteristic of

industrialized economies? Or does persistence instead vary with the monetary policy regime, for

example?

Despite several studies concerning in�ation dynamics, economists have not reached a consensus

about the answers to the previous questions. This paper aims to address some of those questions,

proposing and evaluating learning as a possible solution.

A vast literature uses sticky price models to describe in�ation behavior. The need to match

the sluggishness of price movements and to allow for some real e¤ects of monetary policy led many

researchers to abandon the hypothesis of �exible prices. Current dynamic general equilibrium

models often incorporate price stickiness and imperfect competition. These frameworks are built

from the optimizing choices of economic agents and are therefore theoretically appealing. By

incorporating various rigidities, they were also expected to be empirically more realistic.

But sticky price models still fail to imply realistic levels of in�ation persistence. In the baseline

New Keynesian model, at least, in�ation is in fact an entirely forward-looking variable and all of

its inertia is inherited from the inertia of an exogenous driving variable, i.e. real marginal costs or

the output gap. To improve the empirical �t of these models, it is necessary to extend them by

introducing additional sources of persistence. Those extensions allow researchers to introduce the

dependence of current in�ation on lagged in�ation. The additional channels of inertia have been

variously modeled in the literature by incorporating rule-of-thumb behavior, quadratic adjustment

costs or indexation to past in�ation. The impulse responses become more in line with those derived

from VAR models, implying adjustment delays and sluggish responses.

Gali�and Gertler (1999), for example, allow for the existence of a fraction of �rms that deviate

from full rationality and set instead their prices using simple rule-of-thumbs. Christiano, Eichen-

baum and Evans (2005), Smets and Wouters (2003), Giannoni and Woodford (2003) and Woodford

(2003), on the other hand, allow partial or full indexation of prices to past in�ation rates for �rms

not adjusting their prices optimally in a given period, as an extension to the standard Calvo (1983)

pricing model. The implications are similar: current in�ation ceases to be a merely forward-looking

variable, now also depending on lagged in�ation. Those variations improve the empirical properties

of their models.
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Indeed, it seems that in�ation can be well represented by a speci�cation that nests both forward-

and backward-looking terms. But the relative importance of the two components is a matter of

dispute.

Gali�and Gertler (1999) propose what they call the �New Hybrid Phillips Curve�, in which

real marginal costs are the main driving variable of in�ation, and both expected and past in�ation

a¤ect the dynamics of current in�ation. They argue that in�ation is mainly a forward-looking

phenomenon, �nding roughly 2=3 of rational and 1=3 of rule-of-thumb price setters from their GMM

estimation. Opposite is the view of Fuhrer and Moore (1995) and Fuhrer (1997), who, conversely,

obtain in�ation as purely backward-looking. The opinions in the middle are innumerable.

Together with the sources of persistence in in�ation, another key issue lies in understanding

whether in�ation persistence is an intrinsic characteristic of industrialized economies.1 Recent

studies trying to shed light on this issue are Cogley and Sargent (2005), who �nd evidence of a

structural break in in�ation dynamics, Levin and Piger (2002), who analyzing a panel of industrial

countries conclude that high inertia is not an inherent characteristic of industrial economies, and

Erceg and Levin (2003), who also oppose the view of in�ation persistence as structural and argue

that it can depend on central bank�s perceived credibility. Reis and Pivetta (2003), on the other

hand, �nd that in�ation persistence has remained high and substantially unchanged since 1965.

This paper tries to take a di¤erent route, by suggesting a plausible di¤erent source of in�a-

tion inertia. The paper highlights the potential for adaptive learning in creating persistence in

in�ation and tries to evaluate empirically the importance of learning.

Following a growing literature on learning in macroeconomics, I model private agents as econo-

metricians, who estimate simple models of the economy and form expectations from them. As

agents obtain more data over time, they update their parameter estimates through Constant-Gain

Learning (CGL). This represents a way to model the learning process of agents concerned about

potential structural breaks in the economic relationship they need to learn. One possible way to

proceed to evaluate the empirical importance of learning would consist of simulating the economy

with non-fully rational expectations and assess if those are able to generate enough persistence

compared to the data. This paper instead proposes a di¤erent experiment: I develop an optimizing

model where I introduce learning, but I also allow for a structural characteristic that induces per-

sistence in in�ation. In fact, I allow for indexation to past in�ation by non-optimizing �rms. The

model therefore nests two potential sources of persistence in in�ation: learning and indexation.
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It becomes an empirical matter to understand whether structural sources of persistence remain

essential to match the data, as they were under rational expectations, when learning is instead

introduced.

A related work is Ball (2000), who similarly focuses on expectations and drops the assumption

of full rationality. Ball allows agents to use optimal univariate forecast rules as an alternative to

rational or purely adaptive expectations. The current paper, instead, introduces learning by agents.

Also related are the papers by Roberts (1997, 1998), and Adam and Padula (2003), who estimate

in�ation equations using subjective expectations from surveys. But this paper provides in fact a

way to model the formation of those subjective expectations.

There are other attempts to enrich the models to imply more inertial dynamics. Dotsey and King

(2001), Guerrieri (2005), Holden and Driscoll (2003), Coenen and Levin (2004) propose alternative

adjustments to the model, all with the scope of generating additional persistence, without focusing

on expectations. Mankiw and Reis (2002) and Woodford (2003a) are recent in�uential studies

trying to explain inertia by agents�limited ability to update or absorb information.

This paper therefore aims to contribute to the large literature on in�ation dynamics, proposing

and evaluating a di¤erent explanation of its persistence. Moreover, the current paper can also be

seen as a contribution to the growing literature on adaptive learning.

The majority of studies in the previous adaptive learning literature, in fact, has been mainly

interested in studying the convergence of models with learning to the rational expectations equilib-

rium. This line of research is comprehensively surveyed in Evans and Honkapohja (2001). Similar

scope have the applications in monetary policy models, such as Bullard and Mitra (2002), and

Evans and Honkapohja (2003).

Recently, this area of research has expanded its objectives, applying learning to explain U.S.

in�ation in the 1970s (Sargent 1999, Orphanides and Williams 2003, Bullard and Eusepi 2005,

Primiceri 2003). Williams (2003) examines instead the empirical importance of adaptive learning

in a business cycle model. This paper shares the interest in these new objectives and it aims to

contribute to the understanding of the empirical implications of learning.

By estimating a model with deviations from rational expectations, this paper represents a

simple example of what Ireland (2003) has de�ned �Irrational Expectations Econometrics�. Ireland

pointed out the results obtained by the theoretical literature on learning and emphasized the need

for an �Irrational Expectations Econometrics�that would complement those results, by assessing
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the empirical importance of learning. This is what the paper tries to do. This paper focuses on a

single equation estimation, while a companion paper, Milani (2004b), pursues a joint estimation of

a full New-Keynesian macro-model with learning by likelihood-based Bayesian methods.

The paper focuses on the in�ation equation. The aim is to see how much persistence can be

explained by learning. I discover this by looking at the estimates for the degree of indexation to

past in�ation, necessary to match the data. In models with rational expectations, the coe¢ cient

on indexation has been �xed (CEE) or estimated (Boivin and Giannoni (2003) and Giannoni and

Woodford (2003)) to be equal to 1, or to typically large values.

The empirical results highlight the unimportance of forms of structural persistence in in�ation.

When I drop the assumption of rational expectations, allowing instead economic agents to form their

expectations through constant-gain learning, the estimates of the degree of indexation to lagged

in�ation fall to 0. This suggests that learning can account for a sizeable amount of persistence in

in�ation.

As a related issue, I recognize that when modeling learning behavior, researchers dispose of

a number of degrees of freedom. An important choice is the learning speed of private agents,

i.e. the value to assign to the constant gain parameter. The results can dramatically change for

di¤erent assumptions about the learning speed. This is certainly a concern, also in my context.

This concern leads me to perform an additional experiment: I examine the relationship between

the implied estimates of structural persistence and the possible learning speeds. The estimates

vary a great deal across a large range of gain values. It becomes therefore necessary to compare

the di¤erent possible gains and I will try to shed some light on this by comparing the �t under the

various gain coe¢ cients. In this way, I obtain the value of the best-�tting constant gain coe¢ cient in

the sample. This is close to values typically assumed (without estimation) in the previous learning

literature. I also consider the evolution of the gain coe¢ cient over time and I �nd that the best-

�tting constant gain has been much larger in the post-1982 sample compared with the best-�tting

gain in the pre-1979 sample, indicating faster learning in the latest two decades.

Although several papers have started to employ constant-gain learning, estimates of the gain

lack in the literature. This paper contributes to the literature by providing a �rst attempt to

estimate the best-�tting constant gain in a model of in�ation dynamics.

The �nding that in�ation persistence is not due to structural characteristics, but to learning

behavior by agents carries some important policy implications. The welfare loss will be di¤erent
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under the alternative sources of persistence and, consequently, optimal monetary policy will be

di¤erent. A successful management of expectations, as called for by Woodford (2003b), will be

crucial under learning.

The rest of the paper is structured as follows. Section 2 presents the model, starting from the

microfoundations of a dynamic optimizing general equilibrium (DGE) model under rational expec-

tations. Section 3 presents the aggregate law of motion for in�ation and describes the expectations�

formation mechanism. Section 4 derives the main empirical results of the paper. Section 5 and

6 explore the relationship between learning speed and the implied estimated in�ation persistence

and in-sample �t. Section 7 investigates the robustness of the empirical results to alternative as-

sumptions about the learning rule, while Section 8 discusses the policy implications of the results.

Section 9 concludes.

2. THE MODEL

In this section, I derive the law of motion for in�ation, which will correspond to the popular

New Keynesian Phillips curve, but augmented along two directions. First, to induce a more realistic

degree of inertia in in�ation, I allow non-optimizing �rms to update their prices through indexation

to lagged in�ation, as proposed by Christiano, Eichenbaum and Evans (2005). Then, the paper

makes an important departure from the usual expectations formation mechanism. I drop the

assumption of rational expectations and assume instead that agents behave as econometricians,

estimating an economic model and from that model forming their expectations.

In what follows, I start by setting up the optimal price-setting problem for a �rm under rational

expectations. I shall introduce subjective (possibly non-rational) expectations and learning in the

next section. The current paper focuses only on the price-setting problem by �rms. A full model

with consumer optimization and monetary policy is described in Milani (2004b).

2.1. The Household Problem

I consider a standard economy populated by a continuum of households indexed by i, maximiz-

ing a discounted sum of future utilities. The generic household maximizes the following intertem-

poral utility function:

Eit

1X
T=t

�T�t
�
U
�
CiT ; ; �T

�
�
Z 1

0
v(hiT (j); �T )dj

�
(1)
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where consumer�s utility depends positively on an index of consumption CiT , and negatively on

the amount of labor supplied for the production of good j, hiT (j); �T is an aggregate preference

shock, whereas � 2 (0; 1) is the usual household�s discount factor. Eit here denotes rational (model-

consistent) expectations. The consumption index is of the Dixit-Stiglitz CES form

Cit �
�Z 1

0
cit(j)

��1
� dj

� �
��1

(2)

and the associated aggregate price index is expressed by

Pt �
�Z 1

0
pt(j)

1��dj

� 1
1��

(3)

where � represents the elasticity of substitution between di¤erentiated goods. From the household�s

problem, I just need to derive the marginal utility of real income (here equal to the marginal utility of

consumption, the usual �t = UC(C
i
T ; ; �T )), which will appear in the aggregate supply relationship.

The other details of consumer optimization can therefore remain implicit in the background2.

2.2. Optimal Price Setting

Let�s consider the �rm�s problem. I assume Calvo price-setting, so that a fraction 0 < 1�� < 1

of prices are allowed to change in a given period and are optimally set. The price of the remaining

fraction �, that is not optimally �xed in the period, is adjusted according to the indexation rule

log pt(i) = log pt�1(i) + �t�1 (4)

Similarly to Christiano, Eichenbaum and Evans (2005), Smets and Wouters (2003) and Giannoni

and Woodford (2003), I allow �rms to index their prices to past in�ation when they cannot set their

prices optimally. This extension is typically needed to improve the empirical �t of the model and

it allows one to derive more realistic impulse response functions. 0 �  � 1 represents the degree

of indexation to past in�ation (Christiano, Eichenbaum and Evans (2005) assumed  = 1, meaning

full indexation). An alternative solution to introduce dependence on lagged in�ation would consist

of assuming a fraction of rule-of-thumb �rms. An example is Gali�and Gertler (1999), who de�ne

the derived equation �New Hybrid Phillips Curve�.

The demand curve for product i takes the form:

yt(i) = Yt

�
pt(i)

Pt

���
(5)
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where Yt =
�Z 1

0
yt(i)

(��1)
� di

� �
��1

is the aggregate output, Pt is the aggregate price as in (3). Each

�rm i has a production technology yt(i) = Atf (ht(i)), where At is an exogenous technology shock,

ht(i) is labor input and the function f (�) satis�es the usual Inada conditions.

Since each �rm faces the same demand function (5), all �rms allowed to change their price in

period t will set the same price p�t that maximizes the expected present discounted value of future

pro�ts:

Eit

( 1X
T=t

�T�tQt;T

�
�iT

�
pt(i)

�
PT�1
Pt�1

���)
(6)

where Qt;T = �T�t PtPT
Uc(YT ;�T )
Uc(Yt;�t)

is the stochastic discount factor (Uc is the marginal utility of an

additional unity of income), and�iT (�) denotes �rm�s pro�ts. Firms discount future pro�ts at rate �,

since they can expect the optimal price chosen at date t to apply in period T with probability �T�t.

The �rm chooses fpt (i)g to maximize the �ux of pro�ts (6), for given fYT ; PT ; wT (j); AT ; Qt;T g for

T � t and j 2 [0; 1].

The �rm�s problem results in the �rst-order condition

Eit

8>>><>>>:
1X
T=t

(��)T�t Uc (YT ; �T )YTP
�
T

�
PT�1
Pt�1

�(1��)
��bp�t (i)� �PT s�YT � bp�t (i)PT

��� �PT�1
Pt�1

���
; YT ; �T

��
9>>>=>>>; = 0 (7)

where � = �=(� � 1), s (�) is �rm i�s real marginal cost function in period T � t, given price bp�t (i),
set in t.

The Dixit-Stiglitz aggregate price index evolves according to the law of motion:

Pt =

"
�

�
Pt�1

�
Pt�1
Pt�2

��1��
+ (1� �)p�1��t

# 1
1��

(8)

From a log-linear approximation of the �rm�s �rst order condition3 and some manipulations, I

obtain:

bp�t = Et

1X
T=t

(��)T�t
�
1� ��
1 + !�

(! + ��1)xT + �� (b�T+1 � b�T )� (9)

where ! > 0 is the elasticity of �rm i�s real marginal cost function s (�) with respect to its output

yt(i), � � �Uc=(UccC) is the usual intertemporal elasticity of substitution, and �̂ � denotes log

deviations from the steady state4.
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From a log-linear approximation of the aggregate price index, notice that bp�t = �
(1��) (�t � �t�1),

which plugged in the previous expression gives:

e�t = �xt + bEt 1X
T=t

(��)T�t [���xT+1 + (1� �)�e�T+1] (10)

where

e�t = �t � �t�1 (11)

� � (1� �) (1� ��)
�

�
! + ��1

�
(1 + !�)

� (1� �) (1� ��)
�

� > 0 (12)

and � � (!+��1)
1+!� . Equation (10) can be quasi-di¤erenced to obtain a relationship between current

and one-period-ahead expected in�ation

�t � �t�1 = �xt + �Et [�t+1 � �t] + ut (13)

where I have added an exogenous cost-push shock ut. A recent strand of literature (Gali� and

Gertler (1999), Sbordone (2003)) suggests using the real marginal cost as the driving variable for

in�ation, instead of the more commonly used output gap. As discussed in Woodford (2003b),

the relationship between in�ation and marginal costs holds under weaker assumptions. In fact,

when the marginal cost replaces the output gap there is no need to assume any speci�c theory of

wage-setting, for example.

Therefore, the relationship (13) can be re-expressed in terms of the real marginal cost st:

�t � �t�1 =
(1� ��)(1� �)

�
st + �Et [�t+1 � �t] + ut (14)

Notice that I could have derived similar equations for in�ation dynamics, only with di¤erent

restrictions on the parameters, assuming the existence of some rule-of-thumb �rms (Gali� and

Gertler (1999), Amato and Laubach (2003)), instead of indexation. The results in the following of

the paper are not dependent on this choice.

3. INFLATION DYNAMICS WITH LEARNING

The aggregate dynamics for in�ation in the model is given by eq. (13). I now relax the strong

informational assumptions characterizing �rms� knowledge under rational expectations. In this

section, I assume that �rms have subjective (and possibly non-rational) expectations. Subjective
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expectations are denoted by bEt.5 The law of motion for in�ation under subjective expectations

becomes

�t � �t�1 = �xt + � bEt [�t+1 � �t] + ut (15)

This can be re-expressed as

�t =


1 + �
�t�1 +

�

1 + �
bEt�t+1 + �

1 + �
xt + ut (16)

Under this speci�cation, �rms need to forecast future in�ation rates to determine current in�a-

tion. The next paragraph will give some details about how agents form such forecasts.

3.1. Expectations Formation: Adaptive Learning

Firms do not know the correct model of in�ation dynamics. They behave as econometricians,

estimating an economic model and forming expectations from that model. For simplicity, I start

assuming that �rms estimate a simple linear univariate AR(1) model to form their forecasts of

in�ation:

�t = �0;t + �1;t�t�1 + "t (17)

In the estimation, they exploit the entire history of available data up to period t, f1; �t�1gt�10 .

Eq. (17) is called the �Perceived Law Motion�or PLM of the agents. Notice that, although in

the estimation I will use demeaned variables, I recognize that agents need to estimate an intercept

as well as slope parameters. A strictly positive intercept on in�ation would signal that agents expect

a positive target for in�ation in the sample. In the next sections, I shall evaluate the robustness of

the empirical results to di¤erent PLMs.

As new data become available, agents update their estimates according to the Constant-Gain

learning (CLG) formula

b�t = b�t�1 + �R�1t�1Xt(�t �X 0
t
b�t�1) (18)

Rt = Rt�1 + �(Xt�1X
0
t�1 �Rt�1) (19)

where the �rst expression describes the updating of the forecasting rule coe¢ cients b�t = ��0;t; �1;t�0
over time, and the second shows the evolution of Rt, the matrix of second moments of the stacked

regressors Xt � f1; �t�1gt�10 . The constant gain is expressed by parameter � and, compared with
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the recursive least squares (RLS) gain (equal to t�1), it represents a simple way to model learning

of an agent concerned about potential structural breaks at unknown dates. Constant-gain learning

has also been de�ned as �perpetual�learning, since learning will take place forever and the system

will not converge to the RE solution (but at most to a stochastic distribution around it). A larger �

would imply faster learning of structural breaks, but it would also lead to higher volatility around

the steady state. An appealing feature of this framework is that it embeds the standard rational

expectations hypothesis as a special limiting case, i.e. the case for the gain coe¢ cient � converging

to 0. An increasing number of papers has used constant-gain learning (Orphanides and Williams

2003, 2004, Primiceri 2003).

I assume that agents, when forming expectations in period t, have access to information only up

to t� 1: I therefore replace bEt with bEt�1. Using their PLM and the updated parameter estimatesb�t, agents form expectations for t+ 1 as

bEt�1�t+1 = �0;t�1
�
1 + �1;t�1

�
+ �21;t�1�t�1 (20)

To summarize, the model of the economy is composed by the in�ation dynamics equation (16)

(Phillips curve), agents�beliefs (17), updating equations (18), (19), and the forecasting rule (20).

Substituting agents�expectations formed from their PLM as in (20) into the in�ation dynamics

equation (16), I derive the �Actual Law of Motion� or ALM of the economy, i.e. the law of

motion of �t for a given PLM:

�t =
��0;t

�
1 + �1;t

�
1 + �

+
 + ��21;t
1 + �

�t�1 +
�

1 + �
xt + ut (21)

where the reduced-form coe¢ cients are time-varying and are convolutions of the structural para-

meters describing in�ation dynamics and of the coe¢ cients representing agents�beliefs. In models

with adaptive learning, it is commonly assumed that, in each period t, agents use an econometric

model to form their expectations about future in�ation, but they do not take into account their sub-

sequent updating in periods T > t. Therefore, they act as adaptive decision-makers, in accordance

with what Kreps (1998) de�nes as an anticipated utility model6.

Obviously, although there is just one form of full rationality, several alternative ways to model

learning are possible. The paper considers a simple learning rule (assuming that agents use uni-

variate autoregressive models). But it is worth pointing out that such a simple mechanism of

expectations formation �ts quite well with in�ation expectations from surveys, such as the ex-
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pected in�ation series from the Survey of Professional Forecasters, for example (Branch and Evans

2005).

3.1.1. Is the Expectations Formation Realistic?

As described in Brayton et al. (1997), the most recent Federal Reserve model, the FRB/WORLD,

also employs non-fully rational expectations.

Recognizing the uncertainty surrounding expectations formation, the main Fed model not only

uses model consistent rational expectations, but it also models expectations as derived from a VAR

for �ve �core�macro variables (federal funds rate, CPI in�ation, output gap, long-run in�ation

expectations and long-run interest rate expectations). The underlying justi�cation is that the

agents understand the main features of the economy, as represented by small economic models,

and use this information to form their expectations. The Fed model, however, does not currently

incorporate time-variation in the parameters.

The realism of forming expectations by adaptive learning can be gauged by looking at survey-

based expectations. The expectations derived according to the adaptive learning algorithm track

pretty well the in�ation expectations from the Survey of Professional Forecasters. In particular,

they replicate the underestimation of in�ation in the two peaks in the 1970s and the overestimation

of in�ation during most of the 1990s. Less successful in tracking survey-based forecasts are purely

adaptive (naïve) expectations and RE (since the data display large and persistent forecast errors,

which are less consistent with RE). A substantial literature, in fact, emphasizes how survey ex-

pectations re�ect an intermediate degree of rationality, rejecting full rationality as well completely

naïveté (see Roberts 1998 for example).

Adam (2005) provides some experimental evidence on the formation of in�ation expectations,

showing that forecast rules in which agents condition on lagged in�ation successfully mimic the

in�ation expectations of the subjects in his experiment.

Moreover, learning with a constant gain, useful to account for unknown structural breaks, seems

a plausible choice to model the behavior of professional forecasters. Branch and Evans (2005) show

that constant gain models of learning �t forecasts from surveys better than other methods for both

in�ation and output growth. They �nd that constant-gain learning models dominate models with

optimal constant gain (obtained by minimizing the forecasts�Mean Square Error), with Kalman

Filter, and with Recursive Least Squares learning. Their results therefore support constant-gain
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learning as a model of actual expectations formation.

3.2. Real Marginal Cost as the Driving Variable

Following recent research (Gali�and Gertler (1999), Sbordone (2003)), I also experiment the

real marginal cost as the relevant driving variable for in�ation

�t � �t�1 =
(1� ��)(1� �)

�
st + �Et [�t+1 � �t] + ut (22)

which can be rewritten as

�t =


1 + �
�t�1 +

�

1 + �
bEt�t+1 + (1� ��)(1� �)

� (1 + �)
st + ut (23)

As in the previous case, I assume the same PLM for �rms, i.e. �rms form their expectations by

estimating an AR(1) speci�cation for in�ation as in (16).

The ALM for in�ation becomes

�t =
��0;t

�
1 + �1;t

�
1 + �

+
 + ��21;t
1 + �

�t�1 +
(1� ��)(1� �)
� (1 + �)

st + ut (24)

4. SOME SIMPLE IRRATIONAL EXPECTATIONS ECONOMETRICS: EMPIRI-

CAL RESULTS

I can now estimate the in�ation equation, assuming that �rms form expectations and update

their beliefs through constant-gain learning as described. I use quarterly U.S. data on in�ation,

output, and real marginal costs from 1960:01 to 2003:04. In�ation is de�ned as the annualized

quarterly rate of change of the GDP Implicit Price De�ator, the output gap as detrended GDP

after removing a quadratic trend, the real marginal cost as the unit labor cost, which is empirically

proxied by the log labor income share in deviation from the steady state. All data are taken from

FRED, the database of the Federal Reserve Bank of Saint Louis. I allow agents to initialize their

estimates of coe¢ cients, variances, and covariances, using pre-sample data from 1951 to 1959.

The empirical exercise proceeds as follows. First, I estimate the agents�PLM allowing them

to learn the forecasting coe¢ cients over time through constant-gain learning, as neatly described

by expressions (18) and (19). Then, I substitute the resulting forecasts into the original in�ation

equations, (16) and (22). I initially �x the constant gain � at the value of 0:015. This is consistent

with values derived by minimizing the deviation of the constructed series from the expected in�ation

series from the Survey of Professional Forecasters, as found by Orphanides and Williams (2004).
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I can then simply estimate the ALM for in�ation by NLLS (Nonlinear Least Squares). In this

way, I am able to disentangle the e¤ects of learning from the e¤ects due to structural sources

of persistence in in�ation, such as price indexation. Notice that having explicitly modeled the

formation of agents expectations, it is not necessary to estimate the in�ation equation by GMM

as under RE, therefore avoiding the criticism that GMM has received for Phillips curve estimation

(Lindé 2002, Jondeau and Le Bihan 2003, Fuhrer and Olivei 2004).

This paper therefore focuses on a single equation estimation of in�ation dynamics. This ap-

proach avoids infecting the in�ation equation by potential misspeci�cations in other parts of the

model. In a companion paper (Milani (2004b)) I jointly estimate, instead, a full New-Keynesian

model with learning by likelihood-based Bayesian methods. The two papers represent di¤erent

thought experiments: this paper is implicitly assuming that agents�learning is correctly modeled

and it focuses on estimating structural parameters given the assumed learning speci�cation. Milani

(2004b) pushes the experiment a step further and aims to jointly extrapolate from the data the

learning rule coe¢ cients together with the structural coe¢ cients. In that way, agents�beliefs and

their learning speed are jointly estimated together with the rest of the model. Structural estimates

will be a¤ected by the uncertainty concerning agents� learning speci�cation. This allows for a

better account of total uncertainty in the system. The drawback is that misspeci�cations in the

learning equation will bias the rest of the model coe¢ cients. The current paper instead separately

estimates the learning equation; when the results are inserted in the ALM, they are treated as

certain. Therefore, the standard errors of the structural coe¢ cients are likely to underestimate the

true underlying uncertainty.

These papers provide a �rst example of what Ireland (2003) has de�ned �Irrational Expectations

Econometrics�, judging it needed to complement the mainly theoretical results of the previous

adaptive learning literature.

4.1. What Creates Persistence in In�ation?

The in�ation equation is quite general, allowing for both indexation by �rms and non-rational

expectations. Whether the persistence in in�ation is structural or due to learning behavior becomes

then an empirical question. Understanding the sources of persistence is crucial and the results can

a¤ect the recommendations for optimal monetary policy.
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4.1.1. Agents�Beliefs

Figure 1 shows the evolution of the estimated coe¢ cients in the agents� forecasting equation

(agents�PLM). Economic agents are updating the coe¢ cients through CGL. The reported evolution

of beliefs is obtained assuming a constant gain equal to 0:015.

In the beginning of the sample, agents were coming from periods of low and volatile in�ation

(the 1950s and 1960s), and, consequently, they estimated low autoregressive coe¢ cients for in�ation

(around 0:15 at the beginning of the sample). In the 1970s, in�ation rose substantially and also

became more persistent. Agents recognized the shift and in the 1970s they start estimating much

larger autoregressive coe¢ cients (with a pick around 1975, where the estimated �1;t went up to

0:958). The estimates of perceived in�ation persistence declined in the last part of the sample,

though remaining above 0:8.

The evolution of the intercept in the in�ation equation (recalling that the true value should

always be 0, being the variables demeaned) indicates that the perceived in�ation target was low

in the 1960s, increased and remained high through the second half of the 1970s, and constantly

decreased after the Volcker�s disin�ation.

4.1.2. Structural Estimates

Table 1 shows the estimation results. The table reports the estimates for the alternative speci-

�cations with the output gap and the real marginal cost as main driving variables for the dynamics

of in�ation, and for di¤erent values of the constant-gain coe¢ cient (� = 0:015, 0:02, and 0:03).

I obtain coe¢ cients on indexation to lagged in�ation, , equal to 0:139 and 0:047 in the output

gap and real marginal cost equations, for the case with � = 0:015. The estimates are small and

not signi�cantly di¤erent from 0. I estimate �, the sensitivity of in�ation to changes in the output

gap, equal to 0:22. In the equation with real marginal costs as the driving variable, it is possible

to obtain an estimate of �, the Calvo parameter. I estimate � = 0:671, indicating prices that

remain �xed for 3: 04 quarters. With other gain coe¢ cients, the results still indicate that in�ation

indexation is not supported by the data (I obtain  equal to �0:001 and 0:045 when � = 0:02,

and  equal to �0:18 and �0:09 when � = 0:03). The results about indexation contrast with the

estimates typically computed in the literature.
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Likewise, I can estimate a reduced form equation for in�ation, given by

�t = !b�t�1 + !f bEt�t+1 + �yt + "t (25)

where yt = xt; st. This is similar to reduced forms usually estimated in the empirical literature (the

New Hybrid Phillips curve for example) and the only di¤erence comes from the use of subjective

expectations instead of RE. Estimation of this simple equation yields

�t = 0:105
(0:15)

�t�1 + 0:992
(0:19)

bEt�t+1 + 0:201
(0:037)

xt + b"t (26)

or

�t = 0:045
(0:166)

�t�1 + 0:972
(0:197)

bEt�t+1 + 0:147
(0:029)

st + b"t (27)

when the real marginal cost is used.

4.1.3. Comparison with the Literature

Let�s compare , the estimated degree of indexation to past in�ation, with other estimates in

the literature. Christiano, Eichenbaum and Evans (2005) do not actually estimate , but they �x

it to 1, indicating full indexation. Boivin and Giannoni (2003) and Giannoni and Woodford (2003),

working with the same model of this paper, but with rational expectations instead of learning (in a

fully speci�ed model), estimate a coe¢ cient of  equal to 1. These results point towards extremely

high levels of structural persistence in in�ation.7.

Therefore, estimates of  close to 1 hinge somewhat on the assumption of rational expectations.

When this assumption is weakened, by introducing small deviations from full rationality and al-

lowing agents to learn over time, the degree of in�ation persistence due to structural features of

the economy can drop to almost zero.

There has been a considerable debate in the literature on whether in�ation is mainly a backward

or forward-looking phenomenon. Gali�and Gertler (1999) stress the importance of forward-looking

expectations in their New Hybrid Phillips Curve (NHPC), although still obtaining a positive weight

on lagged in�ation. Fuhrer and Moore (1995) and Fuhrer (1997), on the other hand, depicts in�ation

as substantially backward-looking.

The results of this paper give merit to both ideas. In fact, I obtain that in�ation is mostly

forward-looking (and indeed very forward-looking as seen in eq. (26) and (27)). If expectations are
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formed as in this paper, however, the reduced form will be equivalent to a completely backward-

looking speci�cation. The e¤ort to explicitly model subjective expectations gives a way to dis-

entangle the persistence due to structural characteristics from those due to the sluggishness of

forward-looking expectations (this is extremely hard with RE, or even impossible, see Beyer and

Farmer 2004). It seems easy to understand, though, why many contrasting results in the literature

have emerged disputing the relative importance of backward and forward-looking terms.

5. LEARNING SPEED AND INFLATION PERSISTENCE

In the estimation, I have experimented di¤erent gain coe¢ cients between 0:015 and 0:03.

Such values are common in empirical studies adopting constant-gain learning, as Orphanides and

Williams (2003) for example. The degree of persistence introduced in the system by learning, as

well as the estimates of the indexation parameter, are likely to be strongly dependent on the choice

of the gain parameter.

For this reason, it becomes essential to investigate how the estimates of structural persistence

vary across a wide range of possible gain values. This experiment allows me to examine the

relationship between learning speed and in�ation persistence.

Figure 2 shows such a relationship. The �gure illustrates how the reduced form coe¢ cient on

lagged in�ation ( 
(1+�)) varies with di¤erent gain values ranging from 0 (which is the limit case

corresponding to RE) to 0:30 (the results for values above 0:30 are totally similar to those on that

upper bound).

There seems to be a sort of V-shaped relationship. With a zero gain (remembering that �! 0

corresponds to RE), or with very small gains, the weight given to lagged in�ation in an equation

like (26) is sizeable. With slightly larger gains, the implied coe¢ cients on the backward-looking

term becomes much smaller and implies coe¢ cients below 0:2 for gains around 0:025. Inside this

range, learning is successful in creating enough persistence in in�ation, so that no role remains for

additional sources of structural persistence. Outside that range, for lower or larger gain values,

backward-looking components and indexation remain important, since learning with those gains

does not generate expectations of future in�ation rates that seem supported by the data.
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6. LEARNING SPEED AND FIT

Having such a diverse range of results, it is important to evaluate which value of the constant

gain is more supported by the data. This information is attained by estimating the following simple

equation

�t = �yt + � bEt�t+1 + ut, where yt = xt; st (28)

over the range of all possible gain coe¢ cients from 0 to 0:30 and evaluating how the in-sample �t

changes. It is assumed again that agents form expectations estimating autoregressive speci�cations

for in�ation and updating the coe¢ cients over time through constant-gain learning. As a measure

of �t, I report the Schwartz�s Bayesian information Criterion (BIC).

Figure 3 indicates how the �t (BIC) varies across the whole range of assumed gain coe¢ cients.

Again, it is possible to observe a sort of V-shaped relationship. The best-�tting speci�cations

(lowest BIC) have gain coe¢ cients in the range typically used in previous calibrated learning studies

(between 0:015 and 0:03). Very small gains (close to 0) and large gains (above 0:06) perform very

poorly in terms of in-sample �t.

Table 2 reports the gain coe¢ cients in correspondence of which the lowest BIC is derived. The

best-�tting constant gain coe¢ cient equals 0:02 for the in�ation equation with the output gap

as driving variable. Such a value is similar to what found by Orphanides and Williams (2004)

minimizing deviations of their model-based expectations from data on survey-based expectations.

The results are similar if real marginal costs replace the output gap as the driving variable for

in�ation. The best-�tting constant gain coe¢ cient, reported in table 2, now equals 0:025. Figure

7 also illustrates a similar relationship between constant gain and �t.

6.1. Learning Speed: Pre-1979 and Post-1982 Samples

So far, I have derived the value of the constant gain coe¢ cient that gives the best in-sample

performance for the whole 1960-2004 estimated sample. It is interesting, however, to split the

sample and assess if the speed at which agents were learning have been substantially di¤erent

over time. The pre-1979 sub-sample has been described as a period characterized by a passive

and destabilizing monetary policy rule by Clarida, Gali, and Gertler (2000), who found instead

an active and stabilizing monetary policy rule after 1982. Other papers support the existence of
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two di¤erent policy regimes in the pre-1979 and post-1982 periods. The 1960s and 1970s have

also been characterized by high-volatillity shocks, whereas the 1980s and 1990s have been hit by

more modest shocks: researchers refer to this decline in macroeconomic volatility as �the great

moderation�. Being the economic environments di¤erent in the two sub-samples, it is also possible

that agents�learning speeds have been di¤erent.

Figure 4 and 5 show the �t of the in�ation equation (28) across the whole range of values of

the constant gain coe¢ cient for the pre-1979 and post-1982 samples. The best-�tting gains are

also reported in table 2. The results for the pre-1979 sample are similar to those regarding the

full sample. The best-�tting gain coe¢ cient in the pre-1979 sample is estimated at 0:019. Figure

5 instead highlights how much larger gains are preferred by the data in the Volcker-Greenspan

period. The best-�tting gain in the post-1982 sample is, in fact, equal to 0:122.8 Learning seems

to have been much faster in the 1980s and 1990s compared to the previous decades. To facilitate

intuition, the gain can be interpreted as an indication of the number of observations agents use to

form their expectations. A gain equal to 0:019 indicates that agents use roughly 13 years of data

(52: 6 quarters), whereas a gain equal to 0:122 indicates that agents use 2 years (8:2 quarters) of

data to form their expectations. Similar results are obtained estimating the in�ation equation with

real marginal costs replacing the output gap. The best-�tting constant gains assume value 0:0245

in the pre-1979 sample and 0:124 in the post-1982 sample. Figure 8 and 9 also depict a similar

relation between learning speed and �t across the two sub-samples.

This section has provided some evidence that the speed of learning of agents has importantly

changed over time. It would be interesting to study how di¤erent learning speeds depend on or

a¤ect monetary policy or the level of macroeconomic volatility. Those would be useful extensions,

but beyond the scope of the paper.

7. ROBUSTNESS

I have so far assumed that economic agents use a simple autoregressive model as in (17) as their

PLM. But the correct model of expectations formation is uncertain. Therefore, in this section I

aim to evaluate the robustness of my results to alternative forecast rules.
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7.1. Phillips Curve as Learning Rule

Suppose now that private agents use the reduced form of a Phillips curve to form their in�ation

expectations (assuming they have information up to t� 1). Again, they do not know the relevant

parameters, so they gradually learn them from the data they observe. The agents�PLM is now

�t = �0;t + �1;t�t�1 + �2;txt�1 + "t (29)

with the output gap, and

�t = �0;t + �1;t�t�1 + �3;tst�1 + "t (30)

with real marginal costs entering the Phillips curve. Now the agents are using the same variables

that enter the actual law of motion of in�ation in the model.

Under a constant gain equal to 0:02 (the best-�tting gain in the previous case), for example,

agents estimate the Phillips curve coe¢ cients reported in �gure 10. The intercept again starts low

and increases over the sample, decreasing only in the second half of the 1990s. The agents�belief

about the persistence of in�ation is low in the 1960s and early 1970s, when it jumps from below 0.4

to almost 1 (0.96) around 1975. Another period of extremely high persistence occurs in 1981-1982.

Therefore private agents perceive an extremely large degree of persistence both during the run-up

of in�ation in the 1970s and during Volcker�s disin�ation in the early 1980s. The third coe¢ cient in

the graph represents the elasticity of in�ation to the output gap (slope of the Phillips curve). This

elasticity has been increasing from the late 1960s until 1975, it remained stable (around 0.2) in the

second part of the 1970s, and then it declined after Volcker�s disin�ation. In the 1980s and 1990s,

the estimated elasticity has always been low and it has fallen even more after 1998 (stabilizing

around 0.06). The dynamics is consistent with the existence of an important trade-o¤ between

in�ation and output in the 1960s-1970s, which almost disappeared in the 1980s-1990s.

If I estimate the degree of indexation under this alternative learning rule, I obtain similar

results. Figure 11 shows the estimated backward-lookingness in in�ation across gain coe¢ cients.

The estimates are close to 0 for a range of gain values above 0.05. The �gure also superimposes

the �t of the di¤erent gains. The best-�tting gains are now larger than those obtained under the

simpler AR(1) forecasting rule. The best-�tting gain, reported also in table 3, equals 0:068 (in

correspondence of this gain, the coe¢ cient on the backward-looking term in the in�ation equation

equals 0:043).
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Figure 12 instead repeats the exercise for the learning rule in which marginal costs replace the

output gap. Apart from the weird shape, the message is similar. The best-�tting gain is now 0:0355

(larger than before) and the estimated persistence coming from structural features is small (but

larger than before, 0.168). It is worth noticing from �gures 11-12 that the models with the output

gap seem to provide a better �t than do those with real marginal costs (BIC is around 2.6 instead

of 3).

7.2. Interest Rates in the Learning Rule

Let�s now suppose agents use even more information in their forecasting rule. I now assume

they also include nominal interest rates (the federal funds rate) to forecast future in�ation. The

PLM is

�t = �0;t + �1;t�t�1 + �2;txt�1 + �3;tit�1 + "t (31)

and it is similar to in�ation equations that commonly make part of estimated monetary VARs, for

example.

The results reported in �gure 13 show that the best-�tting gains (also corresponding to the

lowest levels of indexation) lie around 0:1. The best-�tting gain is estimated equal to 0:0995 (at

this gain the backward-looking term in in�ation equals 0.23). Although not a general rule, from

the cases examined so far, it appears that larger information sets lead to higher estimated speeds.

The constant gain increases in fact from 0:02 when only lagged in�ation enters the learning rule,

to 0:068 when in�ation and output gap enter, to 0:0995 when in�ation, output gap, and the federal

funds rate enter.

The results suggest that estimates of the gain are likely to depend on the assumed learning

rule. But also the choice of the regressors entering the agents�PLM can be based on the �t of

the various choices. And it is worth noticing that the learning speci�cations all �t better than an

entirely backward-looking in�ation equation, where current in�ation is regressed on lagged in�ation

and current output gap (BIC = 3.18). In all cases, learning seems to provide a way to account for

the persistence of observed in�ation. Future research should shed more light on how to best model

the learning process.
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8. POLICY IMPLICATIONS

The scope of the paper has been so far descriptive. But understanding the main sources of

in�ation persistence is also crucial from a normative standpoint. Whether the inertia in in�ation

is structural or is instead due to the way agents form their expectations a¤ects in fact the optimal

monetary policy. If the mechanisms that are introduced in the models to induce persistence, such

as indexation, turn out to be the wrong representation of the economy, then a welfare analysis

based on such microfoundations will be erroneous as well.

8.1. Optimal Monetary Policy with Structural In�ation Persistence

Suppose �rst that in�ation depends on its lagged values because of automatic indexation by

�rms. Suppose expectations are fully rational. In this case, the rigidity of prices is due to structural

characteristics of the economy.

The optimal monetary policy in the case of indexation, considering a microfounded DSGE model

as in Woodford (2003b), could be implemented by a central bank minimizing a welfare-based loss

function which takes the following form

Et

1X
T=t

�T�tLt (32)

Lt = (�t � �t�1)2 + �x (xt � x�) 2 (33)

where �x = �
� under this paper�s microfoundations, and x

� > 0 is the optimal output gap level,

which depends on microeconomic distortions such as the degree of market power and the size of

tax distortions in the economy.

This loss function is derived from the microfoundations of the model. It is therefore optimal

not just to minimize the deviation of in�ation from target (assumed equal 0 here), but also the rate

of change. The more persistent in�ation is, the more aggressive the optimal reaction of monetary

policy would be. Optimal policy under commitment from the timeless perspective will satisfy the

target criterion

�t � �t�1 = �
�x
�
(xt � xt�1) (34)
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The optimal rule would be given

i�t =  ��t�1 +  xxt�1 +  uut + r
n
t (35)

where  �,  x,  u are optimal feedback coe¢ cients, i
�
t is the policy instrument, and r

n
t is the natural

real rate of interest. Monetary policy therefore responds to past observable variables and current

shocks.

8.2. Optimal Monetary Policy with Adaptive Learning

On the other hand, suppose that the persistence in in�ation is not caused by structural features

(assuming  � 0), but it is instead due to learning by economic agents. In this case, if the central

bank recognizes this, it would not be optimal to react so aggressively to in�ation as if  was close

to 1. But it would become optimal, instead, to react to the private sector expectations of in�ation.

This would avoid �uctuations induced by mistaken expectations, not in line with the in�ation

target. The central bank would in fact want to avoid �uctuations that become unmoored from

policy objectives. Let�s consider the following New-Keynesian model with learning, also described

in Evans and Honkapohja (2003), Preston (2003), and Milani (2004b)

�t = �xt + � bEt�t+1 + ut (36)

xt = bEtxt+1 � � �it � bEt�t+1 � rnt � (37)

where I have added an aggregate demand equation, and where � represents the elasticity of in-

tertemporal substitution. The central bank will now target the more familiar welfare-based loss

function

Lt = �2t + �x (xt � x�) 2 (38)

leading to an optimal target criterion similar to (34), but with  = 0.

The optimal policy rule under commitment in this case would be (as in Evans and Honkapohja

2003)

i�t =
1

�

� bEtxt+1 � �x

�x + �
2xt�1 +

�
��

�x + �
2 + �

� bEt�t+1 + �

�x + �
2ut + �r

n
t

�
(39)

The implied reaction function makes clear the need for the central bank to respond now to expec-

tations of the relevant variables. Expectations are taken as given by the policymaker, who does



ADAPTIVE LEARNING AND INFLATION PERSISTENCE 23

not incorporate the agents�learning rule in its optimization problem. Hence, I abstract here from

issues of active experimentation. In this way, the optimal target criterion is satis�ed regardless of

the particular expectations held by private agents.

In such a framework, a fundamental task of the central bank and optimal monetary policy

becomes the management of expectations, as emphasized by Woodford (2003b).

In order to keep in�ation expectations close to target, the importance of transparency and

credibility should be emphasized. In particular, if the monetary authority lacks credibility, every

attempt to reduce in�ation, not believed by the public (not incorporated in bEt�t+1), may be useless
and in�ation may just continue to rise for a long time. And a more transparent central bank is

likely to facilitate private sector learning. Bad policy therefore in this new framework can mean

unsuccessful management of expectations and can arise also in the case of a central bank following

a truly optimal rule derived from dynamic optimization. The undesirable outcome of policy in such

a case would be due to an important misspeci�cation of the policymaker�s model: the failure to

understand and incorporate the way agents form their expectations.

Since an important concern in monetary policy points towards robustness of a chosen policy rule,

it would also be necessary to examine the e¤ects of optimal rules under learning, if the policymaker

does not recognize the true agents�PLM or assumes that they form expectations rationally. Preston

(2003) shows that price-level targeting is more robust than in�ation targeting if the policymaker

wrongly assumes that agents have RE rather than recognizing their learning rule. Similarly, it

would be important to evaluate the losses of optimal policy if the policymaker thinks persistence

as structural whereas it is due to learning and vice versa. Coenen (2003) shows the potential large

losses from underestimating the degree of in�ation persistence and suggests aggressive policy as a

safety net. Certainly, if we are willing to believe that bounded-rational expectations and learning

behavior are important determinants of in�ation dynamics, new avenues of research about optimal

monetary policy open. The robustness of optimal rules not only to standard model uncertainty,

but also to uncertainty in the correct speci�cation of the agents�learning rule (dropping RE opens

a wide range of di¤erent alternatives), would be an important matter. Indeed, in real world policy-

making, central banks would hardly argue to target loss functions as (33), which include the rate

of change, besides the level, of in�ation; policymakers put a lot of e¤ort instead on monitoring

the evolution of private sector expectations. This is more consistent with models where learning is

important than with models with structural persistence.
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9. CONCLUSIONS

Several papers have studied the determinants of in�ation dynamics. Monetary policy models

often include a law of motion for in�ation in which current in�ation depends on future expected

in�ation and current output gap or marginal costs. Such a relationship, to which researchers refer

as New Keynesian Phillips curve, can be derived from the optimizing behavior of �rms in models

with imperfect competition and sticky prices. Firms, in those models, have rational expectations.

In their simplest form, New Keynesian Phillips curves fail to match the persistence characterizing

actual data on in�ation. Therefore, researchers have proposed various extensions that lead to

persistence in the in�ation equation. Rule-of-thumb behavior, price indexation, menu costs are

popular modeling devices to account for in�ation inertia.

This paper has suggested a di¤erent approach, proposing learning as an important determinant

of in�ation behavior. In the model, economic agents form expectations from simple economic mod-

els, not knowing the true model parameters. They have the same knowledge that econometricians

would have, and, therefore, they use historical data to infer the relevant parameters and update

their estimates through constant-gain learning.

The paper shows that when learning replaces the standard assumption of rational expectations,

structural sources of persistence, such as indexation, are no longer essential to �t the data. There-

fore, learning seems to be a major source of persistence in in�ation. Disentangling the role of

learning from that of structural sources of persistence carries also normative implications. If learn-

ing rather than mechanical indexation is the main source of persistence in in�ation, the implied

optimal monetary policy will be di¤erent.

Under constant-gain learning, one�s results can heavily depend on the choice of the gain. In the

paper, I have shown how the estimated backward-lookingness in in�ation varies over the range of

possible gain coe¢ cients. The large di¤erences are evidence that working with estimated, rather

than arbitrarily chosen, constant gain coe¢ cients is necessary. The paper has provided some

preliminary evidence, calculating the best-�tting constant gain and showing how the �t of the

in�ation equation changes across the range of assumed gains. The best-�tting gain for the full

sample considered in the paper seems to be around 0:02, not far from values used by other studies

in the learning literature. The estimated learning speed, however, has been far from constant:

the best-�tting constant gain has increased from values around 0:02 in the pre-1979 sample to
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values around 0:12 in the post-1982 sample, indicating a substantial increase in the speed at which

economic agents are learning. The causes and consequences of the variation in learning speed need

to be studied in future work.
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Structural Coe¢ cient
(Stand.Errors)

s

�= 0:015 �= 0:02 �= 0:03

with output gap with marg. cost with output gap with marg. cost with output gap with marg. cost

 0:139
(0:21)

0:047
(0:18)

�0:001
(0:15)

0:045
(0:17)

�0:183
(0:095)

�0:093
(0:12)

� 1:125
(0:06)

1:019
(0:05)

1:114
(0:04)

1:01
(0:05)

1:088
(0:026)

1:00
(0:035)

� 0:229
(0:04)

0:222
(0:032)

0:199
(0:024)

� 0:671
(0:02)

0:679
(0:02)

0:694
(0:018)

Table 1 - Estimates Model with Learning. Equations estimated by NLS.

Output gap as driving variable Marg. cost as driving variable

Full-sample Pre-1979 Post-1982 Full-sample Pre-1979 Post-1982

Constant-Gain � 0:02 0:019 0:122 0:025 0:0245 0:124

Table 2 - Best �tting constant-gain coe¢ cient �. Note: the estimated equation is
�t = �xt + � bEt�1�t+1 + ut, where bEt�1�t+1 = �0;t�1

�
1 + �1;t�1

�
+ �21;t�1�t�1.

Output gap as driving variable Marg. cost as driving variable

(1) (3) (2)

Constant-Gain � 0:068 0:0995 0:0355

Indexation term =(1 + �) 0:0426 0:23 0:1681

Table 3 - Best-�tting gain coe¢ cients. Note: learning rules
(1) �t= �0;t+�1;t�t�1+�2;txt�1+"t
(2) �t= �0;t+�1;t�t�1+�2;tst�1+"t

(3) �t=�0;t+�1;t�t�1+�2;txt�1+�3;tit�1+"t
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Figure 1 - Evolution of agents�beliefs over time.
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Figure 2 - Estimate of structural persistence parameter across constant gain coe¢ cient values �
(in�ation equation with output gap).
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Figure 3 - Fit across constant gain coe¢ cient values � (in�ation equation with output gap). Fit is
measured by BIC.
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Figure 4 - Fit across constant gain coe¢ cient values �: pre-1979 sample (in�ation equation with
output gap).
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Figure 5 - Fit across constant gain coe¢ cient values �: post-1982 sample (in�ation equation with
output gap).
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Figure 6 - Estimate of structural persistence parameter across constant gain coe¢ cient values �
(in�ation equation with marg. cost).

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Learning Speed κ

Fi
t (

B
IC

)

Figure 7 - Fit across constant gain coe¢ cient values � (in�ation equation with marg. cost).
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Figure 8 - Fit across constant gain coe¢ cient values �: pre-1979 sample (in�ation equation with
marg. cost).
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Figure 9 - Fit across constant gain coe¢ cient values �: post-1982 sample (in�ation equation with
marg. cost).
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Figure 10 - Evolution of agents�beliefs (learning rule with output gap)
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Figure 11 - Fit (dashed) and estimated persistence (solid) across constant gain coe¢ cient values �
(in�ation equation with output gap/ Phillips curve learning rule).
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Figure 12 - Fit (dashed) and estimated persistence (solid) across constant gain coe¢ cient values �
(in�ation equation with marginal costs/ Phillips curve learning rule).
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Figure 13 - Fit (dashed) and estimated persistence (solid) across constant gain coe¢ cient values �
(learning rule with interest rates).
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Notes

1Intrinsic in the sense that in�ation persistence is a �stylized fact�that we should expect in most

industrialized economies.

2The full consumer maximization problem with learning is described in companion papers (Mi-

lani 2004a,b), which also examine time non-separable preferences.

3Consistently with most of the New Keynesian literature I log-linearize around a zero steady-

state for in�ation. I am therefore abstracting from the complications arising from log-linearizing

around a positive in�ation steady-state. For an account of the possible implications of this choice,

see Kiley (2004) and Ascari (2004). Indexation permits to avoid the problems due to trend in�ation,

as shown in the appendix A of Ascari (2004). However, the present paper works with partial

indexation, remaining partly vulnerable to such problems.

4I will omit �̂ �from the following section to save some notation. I also omit �i�as a superscript

to indicate the i-th �rm, being the problem identical for every �rm.

5For a di¤erent approach of considering learning, see Preston (2003), where learning is introduced

directly from the primitive assumptions of multi-period decision problems. The derived law of

motion for in�ation will be equal to (10). My choice is instead similar to most papers in the

adaptive learning literature (Evans and Honkapohja 2001, 2003, Bullard and Mitra 2002, Bullard

and Eusepi 2003, and Williams 2003 are examples). See Milani (2004b) for estimations considering

both approaches.

6According to an anticipated utility model, each period agents maximize their expected utility

taking their beliefs and the model as constant, although the model is recursively estimated. But

when more data become available, agents update their beliefs and use this new knowledge to

maximize expected utility. Agents are therefore learning, but they are not involved in active

experimentation as a fully rational behavior would imply.

7Notice that estimates of  close to 1 imply reduced-form coe¢ cients on the backward-looking

term for in�ation only around 0:5.
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8This is obtained by using the estimated mean and variances of beliefs up to 1982:IV as initial

conditions for the post-1982 learning algorithm. The experiment therefore refers to the case of

agents that learn at the speed estimated in table 2 until the end of 1982 and then switch to the

new speed constant gain afterwards.


