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Abstract

Recessions often coincide with intensified restructuring. The conventional Schumpeterian

view argues that recessions promote allocative efficiency by driving out less productive firms and

freeing resources for more productive uses. This paper proposes that the conventional cleansing

effect is offset by a scarring effect. Recessions impede the development of potentially superior

firms, which might put innovations to better uses, but which are destroyed during their infancy,

and never realize their potential. A model of industry dynamics that combines Schumpeterian

creative destruction with firm learning is developed to capture both the cleansing and scarring

effects. Calibrating the model with data from the U.S. manufacturing sector demonstrates that

the scarring effect is likely to dominate the cleansing effect, and accounts for the procyclicality

of average labor productivity, a phenomenon at odds with conventional cleansing models.
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“[Depressions] are the means to reconstruct each time the economic system on a more

efficient plan. But they inflict losses while they last, drive firms into the bankruptcy

court...before the ground is clear and the way paved for new achievement...” Joseph A.

Schumpeter (1934, p. 8)

“You must empty-out the bathing-tub, but not the baby along with it.” Thomas Carlyle

(1904, p. 368)

1 Introduction

With firms going bankrupt and workers getting laid off, recessions often coincide with intensified

restructuring. Davis and Haltiwanger (1999) document sharp spikes in employment loss in major

sectors of the economy during postwar U.S. recessions that largely reflects deaths of businesses.1

Schumpeter (1934) recognized these patterns decades earlier and proposed the concept of “cleans-

ing": recessions are times when outdated techniques and products are driven out, and resources

are freed for more productive uses; hence, notwithstanding the losses to particular businesses and

individuals, recessions lead to greater allocative efficiency. This view has been revived recently by

Hall (1992, 2000), Mortensen and Pissarides (1994), Caballero and Hammour (1994, 1996), and

Gomes, Greenwood, and Rebelo (2001).2

However, as pointed out in Caballero and Hammour (1994), the cleansing effect alone contra-

dicts empirical evidence in one important aspect – cleansing implies countercyclical productivity,

while average labor productivity is in fact procyclical. Caballero and Hammour (1994, p.1365) fur-

ther conjecture that the cleansing effect on productivity “is likely to be small and may be dwarfed

by other factors”. Subsequent theoretical work has supplemented the cleansing view from the cre-

ation side. Barlevy (2002) models on-the-job search and argues that during recessions, due to fewer

vacancies, workers are having a more difficult time moving into jobs for which they are best suited.

Thus, he suggests a “sullying effect" on the creation side playing against the cleansing effect on

the destruction side. Although the existing evidence indicates that job destruction is more respon-

sive to business cycles than job creation,3 the question remains, “Are the production units cleared

1The evidence is based on data that extend through 1993. Caballero and Hammour (2004) argue that recessions
reduce rather than increase restructuring, but only cumulatively. In other words, they do not argue against that job
destruction increases during recessions, but rather notice that often sluggish job creation follows. An extension of
the current paper that can generate predictions consistent with their findings is discussed in the conclusion.

2These authors do not imply recessions lead to higher welfare. Higher allocation efficiency and lower welfare
efficiency may co-exist during recessions.

3According to Davis and Haltiwanger (1999), job destruction is more volatile than job creation in manufacturing
sectors of many economies. The variance of destruction divided by the variance of creation is 2.04 for the U.S., 1.49
for Canada, 1.0 for Denmark, 2.68 for the Netherlands, 1.69 for Germany, 0.68 in Colombia, and 18.19 for the U.K..
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by recessions necessarily the least productive?” If not, then recessions might exacerbate allocative

inefficiency instead of alleviating it as the conventional cleansing view suggests.4

This paper proposes that, in addition to cleansing, recessions have a “scarring effect”. The

focus is on the destruction of young firms. We argue that while recessions drive out some of the

least productive firms, they also kill off “potentially good firms”: those that have the potential

to be proven efficient in the future exit during recessions due to reduced profitability. The loss

of potentially good firms leaves “scars” when a recession arrives, and the “scars” deepen as the

recession persists. The presence of the scarring effect challenges the conventional view of recessions

as periods of solely healthy reallocation: the overall impact of recessions on allocative efficiency

should depend on the relative magnitude of two competing effects – cleansing and scarring.

To understand the scarring effect, consider a firm’s life cycle. Often a firm starts without

knowing itself how good it is. This may come from the unobservable talent of the manager, the

unknown appeal for a product, or the unpredictable profitability of a store location. As the firm

operates, realized revenue signals its true quality: high revenue suggests that the firm is more likely

productive and encourages its continuing operation; low revenue suggests otherwise. A firm learns

more and more as it grows older; once pessimistic enough, it chooses to exit. When a recession

arrives, the profitability declines in general so that the firm cannot bear to learn as long as during

good times. A potentially good firm that would have survived during good times, might thus exit

during recessions before it learns. At the industry level, the exit of potentially good firms reduces

the proportion of good firms at present times, as well as in the future because fewer potentially good

firms are left to learn. The reduced proportion of good firms drives down the average productivity,

which is defined in this paper as a scarring effect.

The above story reflects the spirit of firm learning, advanced theoretically by Jovanovic (1982)

and suggested empirically as an important driving force for firm turnover. For example, Baldwin

(1995), Balk and Gort (1993), Foster, Haltiwanger and Syverson (2005), Jensen, McGuckin and

Stiroh (2000) present evidence showing that, in the US manufacturing sector, firms in each entering

cohort differ in productivity; as the cohort ages, its average productivity rises but productivity

dispersion declines. These patterns can be well explained by firm learning as described above,

which motivates this paper to explore the interaction of learning with business cycles.

We combine learning with the vintage model of Caballero and Hammour (1994) to provide a

framework that captures both cleansing and scarring effects. Firm-level productivity is decomposed

into two components — vintage and unobservable idiosyncratic productivity — so that the indus-

4Ramey and Watson (1997) and Caballero and Hammour (2005) have both examined the efficiency of job destruc-
tion threshold. But they are motivated by whether the job destruction margin during recessions is socially efficient.
Their cyclical implications on productivity are the same as in the models of the conventional cleansing effect: average
job quality goes up during recessions.
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trial average productivity is determined by the distribution of firms across both dimensions. In

equilibrium, firms’ exit ages indicate the oldest vintages in operation, and the number of learning

opportunities available, which in turn, determines the proportion of good firms. Demand varia-

tions serve as source of economic fluctuations. Lower demand reduces profitability in general so

that firms’ exit ages become younger. Younger exit ages directs, on the one hand, resources to

younger and more productive vintages, causing a cleansing effect that raises average productivity;

while, on the other hand, they truncate the learning process that directs resources toward good

firms, creating a scarring effect that pulls down average productivity. Hence, recessions cause two

competing effects — cleansing and scarring. The question then becomes, which effect dominates?

We turn to data on U.S. manufacturing job flows to explore the quantitative implications of the

scarring effect. Our results suggest that, with reasonable calibration, the scarring effect dominates

the cleansing effect in the U.S. manufacturing sector from 1972 to 1993, and can account for the

observed procyclical average labor productivity.

Various studies of the U.S. manufacturing sector have provided wide support for our decom-

position of firm-level productivity.5 The resulting two effects on resource reallocation — vintage

and learning — have also been advanced empirically as powerful tools to understand the patterns

of industrial dynamics.6 The significance of their interactions is noted by Davis and Haltiwanger

(1999), “vintage effects may be obscured by selection effects; vintage and selection effects may also

interact in important ways...” In our model, it is the interaction of these two effects, together with

demand variations, that generates the scarring effect of recessions.

The rest of the paper is organized as follows. Section 2 lays out the model. The cleansing and

scarring effects are motivated in Section 3 by analytical comparative static exercises. Section 4

applies the approach of Krusell and Smith (1998) to numerically solve the model with stochastic

demand fluctuations, and studies its quantitative implications for productivity using data on U.S.

manufacturing job flows. We conclude in Section 5 by discussing the model’s extensions that

generate predictions consistent with other authors’ new findings.

2 A Renovating Industry with Learning

This section describes a learning industry that experiences exogenous technological progress. Firm-

level productivity is modeled to capture the empirical findings by Baldwin (1995), Balk and Gort

(1993), Foster, Haltiwanger and Syverson (2005) that in the U.S. manufacturing sector, each en-

tering cohort appears more productive than incumbents on average, and is itself a heterogeneous

5See Section 2.
6See Caves (1998) for an extensive review of findings on firm turnover and industrial dynamics.
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group in productivity.

2.1 Firms

Consider an industry where labor and capital combine in fixed proportions to produce a homogenous

output. Firms that enter at different times may coexist. Each age cohort consists of a continuum

of firms. A firm hires one worker, so that a job is created when a firm enters and a job is destroyed

when a firm exits. Each firm is characterized by two components:

1. Vintage;

2. idiosyncratic productivity.

A firm’s vintage is given by an exogenous technological progress {At}∞0 that grows at a constant

rate γ > 0 so that

At = A0 · (1 + γ)t,

whereA0 is a constant. A firm enters the industry embodied with the leading technology. It becomes

the firm’s vintage and will affect its production afterward. We assume that, only entrants have

access to the updated technology, incumbents cannot retool. Since technology grows exogenously,

young firms are always technologically more advanced than old firms. With a as the firm age, the

vintage of a firm of age a in period t is At−a. Apparently:

At−a = A0 · (1 + γ)t−a.

At the time of entry, a firm is endowed with idiosyncratic productivity θ. Hence, firms of

the same vintage differ in idiosyncratic productivity. θ can represent the talent of the manager

as in Lucas (1978), or alternatively, the location of the store, the organizational structure of the

production process, or its fitness to the embodied technology.7 The key assumption regarding θ is

that its value, although fixed at the time of entry, is not directly observable.

A firm of age a and idiosyncratic productivity θ produces output in period t, according to

qt(a, θ) = At−a · xt = A0 · (1 + γ)t−a · xt, (1)

where

xt = θ + εt.
7Since a firm is identical to a job under this set-up, θ can also be interpreted as “match quality.” See Pries (2004).
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The shock εt is an i.i.d. random draw from a fixed distribution that masks the influence of θ

on output. We set the operating cost of a firm (including wages) to 1 by normalization, and let Pt
denote the output price in period t. Then the profit generated by a firm of age a and idiosyncratic

productivity θ in period t is

πt (a, θ) = Pt ·A0 · (1 + γ)t−a · (θ + εt)− 1. (2)

Both qt(a, θ) and πt (a, θ) are directly observable. Since the firm knows its vintage, it can infer

the value of xt. The firm uses its observations of xt to learn about θ.

2.2 “All-Or-Nothing” Learning

Firms are price takers and profit maximizers. They attempt to resolve the uncertainty about θ

to decide whether to continue or terminate the production. The random component εt represents

transitory factors that are independent of the idiosyncratic productivity θ. Assuming that εt has

mean zero, we have

Et(xt) = Et(θ) +Et(εt) = Et(θ).

Given knowledge of the distribution of εt, a sequence of observations of xt allows the firm to

learn about its θ. Although a continuum of potential values for θ is more realistic, for simplicity

it is assumed here that there are only two values: θg for a good firm and θb for a bad firm.

Furthermore, εt is assumed to be distributed uniformly on [−ω, ω]. Therefore, a good firm will

have xt each period as a random draw from a uniform distribution over [θg − ω, θg + ω], while the

xt of a bad firm is drawn from an uniform distribution over [θb − ω, θb + w]. Finally, θg, θb and ω

satisfy 0 < θb − ω < θg − ω < θb + ω < θg + ω.

Pries (2004) shows that the above assumptions give rise to an “all-or-nothing” learning process.

With an observation of xt within (θb + ω, θg + ω], the firm learns with certainty that it is a good

idiosyncratic productivity; conversely, an observation of xt within [θb − ω, θg − ω) indicates that it

is a bad idiosyncratic productivity. However, an xt within [θg−ω, θb+ω] does not reveal anything,

since the probabilities of falling in this range as a good firm and as a bad firm are the same (both

equal to 2ω+θb−θg
2ω ).

This all-or-nothing learning simplifies our model considerably. We let θe represent the expected

θ. Since it is θe instead of θ that affects firms’ decisions, there are three groups of firms corresponding

to the three values of θe: firms with θe = θg, firms with θe = θb, and firms with θe = θu,

the prior mean of θ. We define “unsure firms” as those with θe = θu. We further assume that

the unconditional probability of θ = θg is ϕ, and let p ≡ θg−θb
2ω denote the probability of true
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Figure 1: Dynamics of a Birth Cohort: the distance between the concave curve and the bottom
axis measures the density of firms with θe = θg; the distance between the convex curve and the top
axis measures the firms with θe = θb; the distance between the two curves measures the density of
unsure firms (firms with θe = θu).

idiosyncratic productivity being revealed every period. Firms enter the market as unsure; thereafter,

every period they stay unsure with probability 1− p, learn they are good with probability p ·ϕ and
learn they are bad with probability p · (1− ϕ). Thus, the evolution of θe from the time of entry is

a Markov process with values (θg, θu, θb), an initial probability distribution:³
0, 1, 0

´
,

and a transition matrix ⎛⎜⎝ 1 0 0

p · ϕ , 1− p , p · (1− ϕ)

0 0 1

⎞⎟⎠ .

If firms were to live forever, eventually all uncertainty would be resolved because the market

would provide enough information to reveal each firm’s true idiosyncratic productivity. The limiting

probability distribution as a goes to ∞ is³
ϕ, 0, (1− ϕ)

´
.
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Because there is a continuum of firms, it is assumed that the law of large numbers applies, so

that both ϕ and p are not only the probabilities but also the fractions of unsure firms with θ = θg,

and of firms who learn θ each period, respectively. Hence, ignoring firm exit for now, we have the

densities of three groups of firms in a cohort of age a as³
ϕ · [1− (1− p)a] , (1− p)a, (1− ϕ) · [1− (1− p)a]

´
,

which implies an evolution of cross-section firm distribution within a birth cohort as shown in

Figure 1, with the horizontal axis depicting the age of a cohort across time. The densities of firms

that are certain about their idiosyncratic productivity, whether good or bad, grow as a cohort

ages. Moreover, the two “learning curves” (depicting the evolution of densities of good firms and

bad firms) are concave. This feature is defined as the decreasing property of marginal learning

in Jovanovic (1982): the marginal learning effect decreases with firm age, which in our model is

reflected by the fact that the marginal number of learners decreases with cohort age. The convenient

feature of all-or-nothing learning is that, on the one hand, it implies that any single firm learns

“suddenly”, which allows us to easily keep track of the cross-section distribution of beliefs, while

on the other hand, it still implies “gradual learning” at the cohort level.

However, there is more that Figure 1 can tell. If we let the horizontal axis depict the cross-

sectional distribution of firm ages at any instant, then Figure 4 can be interpreted as the firm

distribution across ages and idiosyncratic productivity of an industry that features constant entry

but no exit. In this industry, cohorts continuously enter in the same size and experience the same

dynamics afterward, so that at any one time, different life-stages of different birth cohorts overlap,

giving rise to the distribution in Figure 4. Under this interpretation, Figure 4 indicates that at any

instant older cohorts contain fewer unsure firms, because they have lived longer and learned more.

2.3 The Recursive Competitive Equilibrium

The following sequence of events is assumed to occur within a period. First, entry and exit occur

after firms observe the aggregate state. Second, each surviving firm pays a fixed operating cost to

produce. Third, the aggregate price is realized. Fourth, firms observe revenue and update beliefs.

Then, another period begins.

With this setup, this subsection considers a recursive competitive equilibrium definition which

includes as a key component the law of motion of the aggregate state of the industry. The aggregate

state is (F,D). F denotes the distribution (measure) of firms across vintages and idiosyncratic

productivity. The part of F that measures the number of firms with belief θe and age a is denoted

f (θe, a). D is an exogenous demand parameter; it captures aggregate conditions and is fully
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observable. The law of motion for D is exogenous, described by D’s transition matrix. The law of

motion for F is denoted H so that F 0 = H(F,D). The sequence of events implies that H captures

the influence of entry, exit and learning.

Three assumptions characterize the equilibrium: firm rationality, free entry and competitive

pricing.

Firm Rationality: firms are assumed to have rational expectations; their decisions are forward-

looking. Firms need to observe (F,D) to predict the sequence of prices from today onward. There-

fore, the relevant state variables for a firm are its vintage, its belief about its true idiosyncratic

productivity, and the aggregate state (F,D). We let V (θe, a;F,D) be the expected value, for a

firm with belief θe and age a, of staying in operation for one more period and optimizing afterward,

when the aggregate state is (F,D). Then V satisfies:

V (θe, a;F,D) = E [π (θe, a) |F,D] + βE
£
max

¡
0, V

¡
θe0, a+ 1;F 0,D0¢¢ |F,D¤ (3)

subject to

F 0 = H (F,D)

and the exogenous laws of motion for D and θe ( driven by all-or-nothing learning).

Since firms enter as unsure, firm rationality implies that entry occurs if and only if V (θu, 0;F,D) >

0. Meanwhile, a firm with belief θe and age a exits if and only if V (θe, a;F,D) < 0.

Free entry: new firms are free to enter at any instant, each bearing an entry cost c. The entry

cost can be interpreted as the cost of establishing a particular location or the cost of finding a

manager. Assuming f (θu, 0;F,D) represents the size of the entering cohort when the aggregate

state is (F,D), and letting c represent the entry cost, we have

c = C (f (θu, 0;F,D)) , c > 0 and C 0 ≥ 0. (4)

I let the entry cost depend positively on the entry size to capture the idea that, for the industry

as a whole, fast entry is costly and adjustment may not take place instantaneously. This can arise

from a limited amount of land available to build production sites or an upward-sloping supply curve

for the industry’s capital stock.8 The free entry condition equates a firm’s entry cost to its value

of entry, and can be written as

V (θu, 0;F,D) = C (f (θu, 0;F,D)) . (5)

As more new firms enter, the entry cost is driven up until it reaches the value of entry. At this

8See the next section for further discussion.
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point, entry stops.

Competitive Pricing : the output price is competitive; the price level is given by

P (F,D) =
D

Q (F,D)
(6)

Q represents aggregate output; it equals the the sum of production over heterogeneous firms. Given

(3.1), the sequence of events implies that:9

Q (F,D) = Q
¡
F 0
¢
= A

X
a

X
θe

(1 + γ)−a · θe · f 0 (θe, a) , (7)

where A represents the industry leading technology when the aggregate state is (F,D). f 0 (θe, a)

measures the number of operating firms with θe and a after entry and exit. f 0 (θe, a) belongs to F 0,

the updated firm distribution. Since F 0 = H(F,D), Q is a function of (F,D).

(6) implies that high output drives down the price. (7) implies that Q depends not only on

the number of firms in operation, but also on their distribution. More firms yield higher output

and drive down the price; the more the distribution is skewed toward younger vintages and better

idiosyncratic productivity, the higher the output and the lower the price.

With the above three conditions, we have the following:

Definition: A recursive competitive equilibrium is a law of motion H, a value function

V , and a pricing function P such that (i) V solves the firm’s problem; (ii) P satisfies

(6) and (7); and (iii) H is generated by the decision rules suggested by V and the

appropriate summing-up of entry, exit and learning.

An additional assumption is made to simplify the model:

Assumption: Given values for other parameters, the value of θb is so low that V (θb, a;F,D)

is negative for any (F,D) and a.

This assumption implies that bad firms always exit, so that at any one time, there are only two

types of firms in operation — unsure and good.

9Q is the sum of realized output rather than expected output, since the contribution to aggregate output by each
firm depends on its true type θ rather than θe. However, with a continuum of firms, the law of large numbers implies
that the random noises and the expectation errors cancel out in each cohort, so that the sum of realized output equals
the sum of expected output.
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3 Cleansing and Scarring

This section motivates the cleansing and scarring effects. The previous section shows that the

firm distribution F enters the model as a state variable, which makes it difficult to characterize

the dynamics generated by demand fluctuations. However, similar studies find that the effects

of temporary changes in aggregate conditions are qualitatively similar to the effects of permanent

changes.10 Therefore, we exercise in this section comparative statics on the steady-state equilibrium.

The comparative static exercises capture the essence of industry dynamics as well as how demand

can affect the labor allocation, and thus provide a more rigorous intuition for the scarring and

cleansing effects described in the introduction. In the next section, we will turn to a numerical

analysis of the model’s response to stochastic demand fluctuations and confirm that the results

from the comparative static exercises carry over.

3.1 The Steady State

I define a steady state as a recursive competitive equilibrium with time-invariant aggregate states.11

It satisfies two additional conditions: D is and is perceived as time-invariant: D0 = D; F is time-

invariant: F 0 = H (F,D). Since H is generated by entry, exit and learning, a steady state must

feature time-invariant entry and exit for F = H (F,D) to hold. Thus, it can be summarized

by {f(0), ag,au}, with f (0) as the entry size, ag as the maximum age for good firms, and au as

the maximum age for unsure firms. The next proposition establishes the existence of a unique

steady-state equilibrium. The proof is presented in the appendix.

Proposition 1: With D constant over time, there exists a unique time-invariant {f(0), ag, au}
that satisfies the conditions of firm rationality, free entry and competitive pricing.

The steady-state labor distribution and job flows are illustrated in Figure 2. Like Figure 1,

there are two ways to interpret Figure 2. First, it displays the steady-state life-cycle dynamics

of a representative cohort with the horizontal axis depicting the cohort age across time. Firms

enter in size f (0) as unsure. As the cohort ages and learns, bad firms are thrown out so that the

cohort size declines; good firms are realized, so that the density of good firms increases. After age

au, all unsure firms exit because their vintage is too old to survive with θe = θu. However, firms

with θe = θg stay. Afterwards, the cohort contains only good firms and the number of good firms

remains constant because learning has stopped. Good firms live until ag. The vintage after ag is

too old even for good firms to survive.
10See Mortensen and Pissarides (1994), Caballero and Hammour (1994 and 1996), and Barlevy (2002).
11The term “steady state” follows Caballero and Hammour (1994). Despite its name, the steady-state price

decreases while the steady-state average labor productivity increases over time due to technological progress.
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Figure 2: The Steady-state Labor Distribution and Job Flows: the distance between the lower
curve (extended as the horizontal line) and the bottom axis measures the density of good firms;
the distance between the two curves measures the density of unsure firms.
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Second, Figure 2 also displays the firm distribution across ages and idiosyncratic productivity

at any one time, with the horizontal axis depicting the cohort age cross section. At the steady

state, firms of different ages coexist. Since older cohorts have lived longer and learned more, their

size is lower and their density of good firms is higher. Cohorts older than au are of the same size

and contain only good firms. No cohort is older than ag.

Notice that, despite its time-invariant structure, the industry experiences continuous entry and

exit. With entry, jobs are created; with exit, jobs are destroyed. From a pure accounting point

of view, there are three margins for job flows: the entry margin, the exit margins of good firms

and unsure firms, and the learning margin. At the entry margin, new vintages enter. At the exit

margins, old vintages leave. At the learning margin, bad firms are selected out. Because of creative

destruction, average labor productivity grows at the technological pace γ. Because of learning, the

productivity distribution among older cohorts is more skewed toward good firms. For cohorts older

than au, labor is employed only at good firms.

3.2 Comparative Statics: Cleansing and Scarring

In this subsection, we establish that across steady states corresponding to different demand levels,

the model delivers the conventional cleansing effect promoted in the previous literature, as well as

an additional scarring effect. The two effects are formalized in Propositions 2 and 3. The intuitions

are captured in Figure 3, which displays the steady-state industry structures corresponding to a

high demand and a low demand.12

Proposition 2: In a steady-state equilibrium, the exit age for firms with a given belief is

weakly increasing in the demand level and the job destruction rate is weakly decreasing

in the demand level.

A detailed proof is included in the appendix. Proposition 2 argues that the steady state with a

lower demand features younger exit ages. This is shown in Figure 3 as the leftward shift of the two

exit margins corresponding to a lower demand level. Moreover, the steady-state job destruction

12The entry sizes of the two steady states, although different, are normalized as 1. Since the steady state features
time-invariant entry and all cohorts are the same size, entry size matters only as a scale.
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rate, denoted jdss, equals the following:13

jdss =
1

au · ϕ+ [1−ϕp + (ag − au) · ϕ] · [1− (1− p)au+1]
. (8)

I prove in the appendix that d(jdss)
d(D) ≤ 0. Put intuitively, a high-demand steady state allows

both unsure firms and good firms to live longer, so that fewer jobs are destroyed at the exit margins.

In other words, lower demand tends to drive down the price so that some firms that are viable in

a high-demand steady state are not viable when demand is low.

If this story carries over when D fluctuates stochastically over time, then our model delivers a

conventional “cleansing” effect, in which average firm age falls during recessions so that recessions

direct resources to younger, more productive vintages. However, once learning is allowed, we also

need to take into account the allocation of labor across idiosyncratic productivity. With only two

true idiosyncratic productivity, good and bad, the idiosyncratic productivity distribution of labor

can be summarized by the fraction of labor at good firms. A higher fraction suggests a more efficient

allocation of labor. The next proposition establishes how the level of demand affects this ratio in

a steady state.

Proposition 3: In a steady state equilibrium, the fraction of labor at good firms is weakly

increasing in the demand level.

It can be shown that the steady-state fraction of labor at good firms, denoted lssg , equals:

lssg = 1− (1− ϕ)
pϕau

1−(1−p)au + (1− ϕ) + pϕ (ag − au)
. (9)

In the appendix, we prove that demand affects lssg only through its impact on au so that
d(lssg )
d(D) =

d(lssg )
d(au)

· d(au)d(D) . we also prove
d(lssg )
d(au)

≥ 0, which, together with d(au)
d(D) ≥ 0 suggested by Proposition 2,

implies
d(lssg )
d(D) ≥ 0.

My analysis suggests that the impact of demand on the fraction of labor at good firms comes

from its impact on the exit age of unsure firms. To understand this result intuitively, consider

Figure 3.

13According to Davis and Haltiwanger (1992), for a given population of plants, the job destruction rate in a period
is defined as the total number of jobs lost since the previous period at plants that decreased employment, divided
by the average of total employment in the current and previous periods.With constant total number of jobs, the
steady-state job destruction rate equals the ratio of jobs destroyed at the learning and exit margins over the total
number of jobs. The expression of jdss applies not only to a steady state, but also to any industry equilibrium that
features time-invariant entry and exit. See Subsection 4.2 for further discussions on jdss.

14



 

age 
 

f(  ,a) 

0 

Cleansing Effect 

Cleansing Effect 

Scarring Effect 

Good firms

Unsure firms 

Figure 3: Cleansing and Scarring

In Figure 3, because of the cleansing effect, the two exit margins shift to the left corresponding

to a lower demand. The shifted margins clear out old firms that could be either good or unsure.

However, the leftward shift of the unsure exit margin also reduces the number of older good firms.

The latter effect, shown as the shaded area in Figure 3, is the scarring effect of recessions.

The scarring effect stems from learning. New entrants begin unsure of their idiosyncratic pro-

ductivity, although a proportion ϕ are truly good. Over time, more and more bad firms leave while

good firms stay. Since learning takes time, the number of “potentially good firms” that realize their

true idiosyncratic productivity depends on how many learning chances they have. If firms could

live forever, eventually all the potentially good firms would get to realize their true idiosyncratic

productivity. But a finite life span of unsure firms implies that if potentially good firms do not

learn before age au, they exit and thus forever lose the chance to learn. Therefore, au represents

not only the exit age of unsure firms, but also the number of learning opportunities. A low au

allows potentially good firms fewer chances to realize their true idiosyncratic productivity, so that

the number of old good firms in operation after age au is also reduced.

Hence, the industry suffers from uncertainty; it tries to select out bad firms but the group of

firms it clears at age au includes some firms that are truly good. The number of clearing mistakes

the industry makes at au depends on the size of the unsure exit margin, which in turn depends
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on the value of au.14 When a drop in demand reduces the value of au, this reduces the number of

learning opportunities, allows fewer good firms to become old and thus shifts the labor distribution

toward bad firms.

To summarize from Propositions 2 and 3, a low-demand steady state features a better average

vintage, yet a less efficient cross-idiosyncratic productivity distribution of labor. If the comparative

static results carry over when demand fluctuates stochastically, then recessions will have both a

conventional cleansing effect, shifting resources to better vintages, and a scarring effect, shifting

resources to bad idiosyncratic productivity. The two effects are directly related to each other: it is

the cleansing effect that significantly reduces learning opportunities and hence prevents more firms

from realizing their potential.

When we move beyond steady states to allow for cyclical fluctuations, the intuition behind

“cleansing and scarring” still carries over. Again, consider Figure 3. Both exit margins shift as

soon as demand drops so that the cleansing effect takes place immediately.15 However, the scarring

effect takes place gradually. When a recession first arrives, the group of firms already in the

shaded area in Figure 3 will not leave despite the shift in exit margins, since they know their true

idiosyncratic productivity to be good. They leave gradually as the recession persists. At this point,

the scarring effect starts to take place: the reduced au allows fewer good firms to survive past au.

The shaded area would eventually be left blank, and the “scar” left by recessions would surface.

3.3 Sensitivity Analysis

Before we turn to the numerical analysis to characterize the transitional dynamics, we close this sec-

tion with two modifications of the model to check the robustness of our results from the comparative

static exercises.

First, we allow the entry cost to be independent of entry size. In our model, C is assumed to

depend positively on entry size, so that a lower demand is accommodated by both less entry and

more exit. But the entry margin may exclusively accommodates demand fluctuations. This extreme

case is defined as the “full-insulation” case in Caballero and Hammour (1994). They argue that it

occurs when C 0 (f (θu, 0)) = 0. The intuition is as follows. If entry cost is independent of entry size,

then fast entry is costless and the adjustment on the entry margin becomes instantaneous. When

demand falls, entry will adjust to such a level that aggregate output falls by the same proportion,

which keeps price at the same level. Then the value of staying remain unaffected, and the exit

margins do not respond. The "full-insulation" case when C 0 (f (θu, 0)) = 0 is also present in our

14The all-or-nothing learning suggests that the number of truly good firms cleared out at au equals f (0) (1− p)au ϕ.
15My numerical exercises imply that when demand falls, these margins initially shift more than suggested by the

comparative static exercises. The margins shift back partially as the recession persists. A detailed discussion of this
phenomenon is contained in Section 4.
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model.16 Hence, with entry cost independent of entry size, there is neither a cleansing effect nor a

scarring effect.

However, in reality, an industry may not be able to create all the necessary production units

instantaneously. Goolsbee (1998) shows empirically that higher investment demand drives up both

the equipment prices and the wage of workers producing the capital goods. His findings suggest

that as more firms enter and increase the demand for capital, it becomes increasingly costly to

purchase capital. Therefore, C 0 (f (θu, 0)) > 0 seems more reasonable. Furthermore, data does

not support the assumption that C 0 (f (θu, 0)) = 0. In the full-insulation case, job creation fully

accommodates demand fluctuations and job destruction does not respond. This contradicts the

large and robust evidence of highly volatile job destruction across sectors and economies.

Second, we allow the process of learning to be more complicated than “all-or-nothing” to see if

the scarring effect still carries over. To look at the scarring effect from a different angle, suppose

we divide firms into two groups, young and old.17 With log denoting the fraction of labor at good

firms among the old, lyg as the fraction among the young, fy as the density of young firms and fo

as the density of old firms, the fraction of labor at good firms for the industry as a whole, lg, can

be written as:

lg =
fylyg + folog
fy + fo

=
lyg + log

fo

fy

1 + fo

fy

.

The first order derivative of lg with respect to
fo

fy equals:

d (lg)

d
³
fo

fy

´ = log − lyg

1 + fo

fy

.

which is greater than or equal to zero as long as log− lyg ≥ 0. Since old firms have experienced more
learning, log − lyg ≥ 0 should hold for any learning process. Hence, the scarring effect of recessions
occurs regardless of the learning process, as long as recessions reduce the ratio of old to young firms

( f
o

fy ), which by definition will be true in any model in which recessions cleanse the economy of older

vintages. Intuitively, recessions shift resources toward younger firms, so that there cannot be as

much learning taking place as in booms. Although this analysis is preliminary, we can still argue

that recessions would allow for less firm learning, so the scarring effect would carry over even with

a more complicated process of learning.18

16 It is discussed in the proof for Proposition 2. See the appendix.
17The cut-off age to define “young” and “old” is arbitrarily chosen. Changing this cut-off age does not affect the

analysis that follows.
18To be more specific, suppose we assume a more complicated learning process with normally distributed random

noise, so that the signals received by good firms are normally distributed around θg and the signals received by bad
firms are normally distributed around θb. In that case, a firm can never know for certain that it is good or bad, and
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4 Quantitative Implications with Stochastic Demand Fluctuations

This section applies numerical techniques to analyze a stochastic version of our model in which the

demand level follows a two-state Markov process with values [Dh,Dl] and transition probability μ.

Throughout this section, firms expect the current demand level to persist for the next period with

probability μ, and to change with probability 1− μ.

The key computational task is to map F , the firm distribution across ages and idiosyncratic

productivity, given demand level D, into a set of value functions V (θe, a;F,D). Unfortunately,

the endogenous state variable F is a high-dimensional object. The numerical solution of dynamic

programming problems becomes increasingly difficult as the size of the state space increases. Our

computational strategy follows Krusell and Smith (1998) by shrinking the state space into a limited

set of variables and showing that these variables’ laws of motion can approximate the equilibrium

behavior of firms in the simulated time series. Details are presented in the appendix.

With approximated laws of motion, we first confirm that the basic insights from the comparative

static exercises carry over with probabilistic business cycles. Then we examine whether the scarring

effect is likely to be empirically relevant. Specifically, we calibrate our model so that its equilibrium

job destruction rate mimics the observed pattern in the data. As we have argued, recessions clear

out old firms, including some good firms that have not yet learned their type. Therefore, the model

allows us to use the job destruction rate to make inferences on the size of the cleansing and scarring

effects.

4.1 Calibration

Table 1 presents the assigned parameter values. Some of the parameter values are pre-chosen.

The most significant in this group are the relative productivity of good and bad firms. We follow

Davis and Haltiwanger (1999), who assume a ratio of high-to-low productivity of 2.4 for total factor

productivity and 3.5 for labor productivity based on the between-plant productivity differentials

reported by Bartelsman and Doms (1997). Since labor is the only input in our model, we normalize

productivity of bad firms as 1 and set productivity of good firms as 3.5. We allow a period to

represent one quarter and set the quarterly discount factor β = 0.99. Next, we need to choose γ,

the quarterly pace of technological progress. In a model with only creative destruction, Caballero

posterior beliefs are distributed continuously between θb and θg. The expected value of staying would still depend
positively on θe and negatively on age. Thus, given the aggregate state, there would be a cut-off age for each belief,
a (θe;F,D), such that firms with belief θe do not live beyond a (θe;F,D).
With a recession, the value of staying across all ages and idiosyncratic productivity falls, so that for each belief

θe, the cut-off age a(θe;F,D) becomes younger. Hence, the firm distribution tilts toward younger ages and fo

fy
falls.

Since
d(lg)
d fo

fy
≥ 0, a fall in fo

fy
drives down the ratio of good firms and creates the scarring effect.
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parameters (pre-chosen) value
productivity of bad firms: θb 1

productivity of good firms: θg 3.5

quarterly technological pace: γ 0.007

quarterly discount factor: β 0.99

parameters (calibrated) value
high demand: Dh 9969.2

low demand: Dl 6973.1

prior probability of being a good firm: ϕ 0.142

quarterly pace of learning: p 0.08

persistence rate of demand: μ 0.58

entry cost function 0.405 + 0.52 ∗ f(0, θu)

Table 1: Base-line Parameterization of the Model

and Hammour (1994) choose the quarterly technological growth rate as 0.007 by attributing all

output growth of US manufacturing from the second quarter of1972 to the fourth quarter of 1983

to technical progress. To make comparison with their results convenient in the coming subsections,

we also choose γ = 0.007. Caballero and Hammour (1994) estimate the entry cost function by

matching the job creation series of US manufacturing from 1970 to 1989. Their result is applied

here as C = 0.405 + 0.52 ∗ f(0, θu) with f(0, θu) representing the size of entry.

The remaining undetermined parameters are: p, the pace of learning; ϕ, the probability of

being a good firm; Dh and Dl, the demand levels; μ, the probability with which demand persists;

and c0 and c1, the entry cost parameters. The values of these parameters are chosen so that the

job destruction series in the calibrated model matches properties of the historical series from the

U.S. manufacturing sector. Davis and Haltiwanger (1999) shows that the U.S. manufacturing job

destruction rates from the second quarter of 1972 to the fourth quarter of 1993 fluctuates between

2.96% and 11.60% with a mean of 5.6% and a standard deviation of 1.66%. This put the following

restrictions on our calibrated model.

First, its implied long-run job destruction rate must be around 5.6%. Our numerical simula-

tions suggest that the dynamic system eventually settles down with constant entry and exit along

any sample path where the demand level is unchanging. The industry structures at these stable

points are similar to those at the steady states, which allows us to use steady state conditions for

approximation.19 We let ag and au represent the maximum ages of good firms and unsure firms

at the high-demand steady state and ag
0 and au

0 represent the exit ages at the low-demand steady

state. The steady-state job destruction rate implied by either pair, has to be around 5.6%.

19However, a stable point is different from a steady state. In a steady state, firms perceive demand as constant,
while in a stable point, firms perceive demand to persist with probability μ, and to change with probability 1− μ.
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Second, we match the peak in job destruction that occurs at the onset of a recession. Our model

suggests that the jump in the job destruction rate at the beginning of a recession comes from the

shift of exit margins to younger ages. We assume that when demand drops, the exit margins shift

from ag and au to ag 0 and au
0 immediately, and the job destruction rate at this moment must not

exceed 11.6%.20

Third, we match the trough in job destruction that occurs at the onset of a boom. Our model

suggests that when demand goes up, the exit margins extend to older ages, so that for several

subsequent periods job destruction comes only from the learning margin, implying a trough in the

job destruction rate. To match the data, the job destruction rate at this moment has to be around

3%.

Additionally, (ag, au) and (ag 0, au0) must satisfy steady state conditions on the gap between the

exit ages of good and unsure firms. In total, there are six equations to pin down the values of six

parameters.21 Using a search algorithm, we find that these conditions are satisfied for the following

combination of parameter values: p = 0.08, ϕ = 0.142, ag = 78, au = 64, ag 0 = 73, au0 = 59. By

applying these ag, au, ag 0 and au
0 to the steady state industry structure, we find Dh = 9969.2 and

Dl = 6973.1.

The value of μ is calibrated to match the observed standard deviation of the job destruction

rate of 1.66%. In our model, the job destruction rate jumps above its mean when demand drops

and falls below when demand rises. Thus, the frequency of demand switches between Dh and Dl

determines the frequency with which the job destruction rate fluctuates between 11.6% and 3%,

which in turn affects the standard deviation of the simulated job destruction series. Our calibration

exercises suggest μ = 0.58.

4.2 Response to a Negative Demand Shock and Simulations of U.S. Manufac-
turing Job Flows

With all of the parameter values assigned, we approximate firms’ value functions applying the com-

putational strategy that follows Krusell and Smith (1998). With the approximated value functions,

the corresponding decision rules, and an initial firm distribution, we can investigate the dynamics of

our model’s key variables along any particular path of demand realizations, and study the model’s

quantitative implications.

20As I have noted earlier, the calibration exercises suggest that when a negative aggregate demand shock strikes,
the exit margins shift more than ag 0 and au0. The bigger shift implies a bigger jump in job destruction, This is why I
require negmax to lie below 11.60%. I experiment with different demand levels to find those that generate the closest
fit.
21These equations are availble upon request.
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4.2.1 Scarring and Cleansing over the Cycle

To assess the effect of a negative demand shock, we start with a random firm distribution and

simulate our model with demand level equal to Dh for the first 200 quarters. Regardless of the

initial firm distribution, we find that the exit age of good firms settles down to 76, the exit age

of unsure firms settles down to 61, the job destruction rate converges to 5.38%, and the fraction

of good firms converges to 49.8%. This suggests that our model is globally stable. Once the key

variables converge, we simulate the effects of a negative demand shock that persists for the next 87

quarters.

The dynamics of the job destruction rate and the job creation rate are illustrated in Panel 1

of Figure 4, with the quarter labeled 0 denoting the onset of a recession. The job destruction rate

goes up from 5.38% to 10.84% on impact. Thus, the immediate effect of a negative demand shock

is to clear out some firms that would have stayed in had demand remained high. After 70 quarters,

the job destruction rate converges to 5.63%, still above its original value. Hence, the conventional

cleansing effect of demand on job destruction that we establish analytically in steady state carries

over with probabilistic cycles.

Unlike the job destruction rate, the job creation rate drops from 4.69% to 4.32% when a recession

strikes, rises gradually and converges later. This matches the finding of Davis and Haltiwanger

(1992) that the job creation rate falls during recessions and co-moves negatively with the job

destruction rate over the cycle.22

The analysis of the steady state also suggests that recessions will bring a scarring effect by

shifting labor resources toward bad firms. As shown in Panel 2 of Figure 4, the fraction of labor at

good firms drops from 49.8% to 48.07% when the negative demand shock strikes and converges to

47.87% after 70 quarters. This implies that the negative demand shock shifts the cross-idiosyncratic

productivity firm distribution toward bad firms. Hence, the scarring effect suggested by the steady-

state analysis also carries over with probabilistic business cycles.

Two remarks are in order regarding the response of the fraction of labor at good firms to a

negative demand shock. First, the initial drop in lg at the onset of a recession contradicts our

argument in Section 2 that the scarring effect takes time to work. Our calibration exercises suggest

that this feature is robust and can be understood as follows. Recessions shift both exit margins

to younger ages. While the shift of the exit margin for unsure firms clears out both bad firms and

good firms, the shift of the exit margin for good firms clears out only good firms, so that in total

more good firms are cleared out than bad firms initially and lg drops at the onset of a recession.

Since lg eventually converges to a value below the initial drop, and the initial drop in lg also stems

22Davis and Haltiwanger (1999) report a correlation coefficient of −0.17 of job destruction and job creation for the
U.S. Manufacturing from 1947:1-1993:4.

21



0 20 40 60 80 100
0.04

0.05

0.06

0.07

0.08

0.09

0.1 

0.11
Panel 1: Job Reallocation Rates

0 20 40 60 80 100
0.475

0.48

0.485

0.49

0.495

0.5
Panel 2: Fraction of Good Firms

0 20 40 60 80 100
0.99

0.995

1

1.005

1.01

1.015
Panel 3: Average Labor Productivity

0 20 40 60 80 100
−20

−15

−10

−5

0

5
x 10

−3 Panel 4: Scar

Job Destruction Rate 

Job Creation Rate 

Vin 

Prod 

Figure 4: Response to a Negative Demand Shock: vin is the detrended average labor productivity
driven only by the cleansing effect, prod is the detrended average labor productivity driven by
both the cleansing effect and the scarring effect. Scar = prod − vin. The horizontal axis denotes
quarters, with the quarter labeled 0 denoting the onset of a recession.
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from learning, this result does not hurt our argument that in a model with learning, recessions

create a scarring effect by shifting resources toward bad firms.

Second, the response of lg shown in Panel 2 is hump-shaped: it drops initially, increases grad-

ually, then declines again. This feature is mainly due to the response of the exit margins over the

cycle. When a recession first strikes, the exit margins over-shift to the left, and shift back gradually

as the recession persists. As the exit margin for unsure firms shifts back, more good firms are

allowed to reach their potential; meanwhile, as the exit margin for good firms shifts back, no old

good firms exit for several quarters. Hence, lg increases after the initial drop. The exit margins

reach their stable points after about 20 quarters. From then on, lg starts to fall, with old good

firms gradually being cleared out but not enough new good firms being realized. Another part of

this hump-shaped response comes from the entry margin. Because they have had no time to learn,

newly entered cohorts have the least efficient cross-idiosyncratic productivity firm distribution in

the industry, so that entry tends to drive down lg. When entry falls in a recession, the negative

impact of entry on lg is also reduced, which contributes to part of the increase in lg after the initial

drop.

To summarize, despite some transitory dynamics, Panel 1 and Panel 2 of Figure 4 suggest

that both the conventional cleansing effect established in Proposition 1, and the scarring effect

established in Proposition 3, carry over with probabilistic business cycles.

4.2.2 Implications for Productivity

Next, we turn to the quantitative implications of the model for the cyclical behavior of average labor

productivity. Let A represent the leading technology. With one worker per firm setup and firm-level

productivity given by A·θ
(1+γ)a , average labor productivity is affected by A and the firm distribution

across a and θ. While technological progress drives A, and thus average labor productivity, to grow

at a trend rate γ (the technological pace), demand shocks add fluctuations around this trend by

affecting the labor distribution across a and θ.

To analyze the fluctuations of average labor productivity over the cycle, we define de-trended

average labor productivity as the average of θ
(1+γ)a over heterogeneous firms. In evaluating this

measure, recall that there are two competing effects. On the one hand, the cleansing effect drives

down the average a by lowering the cut-off ages for each idiosyncratic productivity, causing average

labor productivity to rise. On the other hand, the scarring effect drives down the average θ by

shifting resources away from good firms, causing average labor productivity to fall. To separate the

two effects, we generate two indexes for average labor productivity. The first index is the average
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of θ
(1+γ)a

across all firms in operation, defined as the following:

prod =

P
f

³
θe

(1+γ)a

´
· f (θe, a)P

f

f (θe, a)
.

This measure is affected by both cleansing and scarring effects. The other index is the average of
1

(1+γ)a
across all existing firms, defined as:

vin =

P
f

³
1

(1+γ)a

´
· f (θe, a)P

f

f (θe, a)
.

This measure is affected only by the cleansing effect. To compare the relative magnitude of these

two effects, their initial levels are both normalized as 1. Since only the cleansing effect drives

the dynamics of vin but both cleansing and scarring effects drive the dynamics of prod, the gap

between vin and prod reflects the magnitude of the scarring effect. A scarring index measures this

gap. It is defined as:

scar = prod− vin.

Panel 3 in Figure 4 traces the evolution of vin and prod in response to a negative demand

shock. As the negative demand shock strikes, the cleansing effect alone raises the average labor

productivity to 1.013 while the scarring effect brings the average labor productivity down to 0.9974.

After 70 quarters, prod converges to 0.9947 while vin converges to 1.0126. The dynamics of the

scarring index in response to a negative demand shock is plotted in Panel 4 of Figure 4. The scarring

index remains negative following a negative demand shock and eventually converges to −0.0179.
This matches the predictions of our model that the scarring effect plays against the conventional

cleansing effect during recessions by shifting resources away from good firms, driving down the

average labor productivity.

4.2.3 Simulation of U.S. Manufacturing Job Flows

To gauge whether the scarring effect is likely to be relevant at business cycle frequencies, we simulate

our model’s response to random demand realizations generated by the model’s Markov chain. We

perform 1000 simulations of 87 quarters each. Results are presented in Table 2. The reported

statistics are means (standard deviations) based on 1000 simulated samples. Sample statistics for

U.S. Manufacturing data for the 87 quarters from the second quarter of 1972 to the fourth quarter
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simulation statistics data
jdmean 5.21%(0.0593%) 5.6%

jdstd 1.34%(0.1100%) 1.66%

jcmean 4.83%(0.0158%) 5.19%

jcstd 0.24%(0.0055%) 0.95%

corr(prod, q) 0.1221(0.2131) 0.5537∗

Table 2: Means (std errors) of 1000 Simulated 87-quarter Samples: jd is the job destruction
rate, jc is the job creation rate, prod is detrended average labor productivity, q is detrended
aggregate output. Data comes from the U.S. Manufacturing job flow series for 1972:2-1993:4,
compiled by Davis and Haltiwanger. *Detrended average labor productivity is calculated as output
per production worker, with output measured by industrial production index. The quarterly series
of industrial production index of U.S. manufacturing sector for 1972:2-1993:4 comes from the Federal
Reserve and the series of total production workers comes from the Bureau of Labor Statistics.

of 1993 are included for comparison. In the table, jd and jc represent the job destruction and job

creation rate; prod and q represent de-trended average labor productivity and de-trended output.

Table 2 suggests that our calibrated model can replicate the observed patterns of job flows;

moreover, the positive correlation coefficient of 0.1221 between prod and q implies that our model

generates procyclical average labor productivity for the U.S. manufacturing sector in the relevant

period. Put differently, under our benchmark calibration the scarring effect on cyclical productivity

dominates the cleansing effect.

4.3 Sensitivity Analysis of the Dominance of Scarring over Cleansing

In the baseline parameterization, we follow Caballero and Hammour (1994) in setting the quarterly

technological pace γ equal to 0.007. The value was estimated by attributing all output growth of

the U.S. manufacturing sector to technological progress, which may exaggerate the technological

pace in the relevant period. An alternative estimate of γ, has been provided by Basu, Fernald and

Shapiro (2001), who estimate TFP growth for different industries in the U.S. from 1965 to 1996 after

controlling for employment growth, factor utilization, capital adjustment costs, quality of inputs and

deviations from constant returns and perfect competition. They estimate a quarterly technological

pace of 0.0037 for durable manufacturing, a pace of 0.0027 for non-durable manufacturing and an

even slower pace for other sectors.

How would a slow pace of technological progress affect the magnitudes of the scarring and

cleansing effects? To address this question, we re-calibrate our model assuming γ = 0.003, match-

ing the same moments of job creation and destruction as before, and simulate responses to a neg-

ative demand shock. The results are presented in Table 3 together with results from the baseline
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Calibration Results γ = 0.003 γ = 0.007

calibrated p 0.0830 0.0800

calibrated ϕ 0.1200 0.1420

Response to a Negative
Demand Shock
vin (when a recession strikes) 1.0052 1.0130

vin (70 quarters after a reces-
sion strikes)

1.0029 1.0126

prod (when a recession strikes) 0.9866 0.9974

prod (70 quarters after a reces-
sion strikes)

0.9820 0.9947

scar (when a recession strikes) −0.0186 −0.0156
scar (70 quarters after a reces-
sion strikes)

−0.0209 −0.0179

Table 3: Sensitivity Analysis to a Slower Technological Pace (I): prod is detrended average labor
productivity, driven by both the cleansing and the scarring effects, vin is the component of de-
trended average labor productivity driven only by the cleansing effect, scar = prod - vin. Other
parameter values are as shown in Table 2.

parameterization.

The calibration results in Table 3 suggest that the model with γ = 0.003 needs a faster learning

pace (p = 0.083 compared to 0.08) and a smaller prior probability of firms’ being good (ϕ = 0.120

compared to 0.142) to match the observed moments of job flows.23 The simulated responses suggest

that slower technological progress magnifies the scarring effect, weakens the cleansing effect, and

magnifies the procyclical behavior of productivity.

This result can be explained as follows. First, slower technological progress implies that the

force of creative destruction is weak. A lower γ weakens the technical disadvantage of old firms

and allows both good firms and unsure firms to live longer, so that less job destruction occurs at

the exit margins. A lower γ also implies a smaller cleansing effect on average labor productivity.

A recession clears out marginal firms by shifting the exit margins toward younger ages. The size

of the shift is pinned down in our calibration exercises by matching jdmax ≈ 11.6%. Given the

shift of exit margins, a slower technological pace shrinks the productivity difference between the

23Consider (8), the expression of jdss for intuition. My calibration exercises look for parameter values that satisfy
three moment conditions on job flows, one of which is that jdss ≈ 5.6%. Proposition 3 establishes that jdss decreases
with the exit ages (ag and au). It can be further shown that it increases in p but decreases in ϕ. A slower technological
pace weakens the technical disadvantage of old firms and extends their life span so that both ag and au tend to increase.
Hence, the job destruction rate would decrease if p and ϕ remain the same. A faster learning pace and a lower prior
probability of being good are thus needed to match the observed mean job destruction. Thus, the paramerization of
my model with γ = 0.003 suggests that more job destruction comes from learning rather than creative destruction.
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simulation statistics
with γ = 0.003

simulation statistics
with γ = 0.007

data

jdmean 5.60%(0.0534%) 5.21%(0.0593%) 5.6%

jdstd 1.23%(0.0996%) 1.34%(0.1100%) 1.66%

jcmean 5.25%(0.0171%) 4.83%(0.0158%) 5.19%

jcstd 0.26%(0.0059%) 0.24%(0.0055%) 0.95%

corr(prod, q) 0.6563(0.1599) 0.1221(0.2131) 0.5537

Table 4: Sensitivity to A Slower Technological Pace (II): Means (std errors) of 1000 Simulated
87-quarter Samples. Definitions, measures and data sources are the same as Table 4.

vintages that have been killed and the ones that have survived, so that the impact of the cleansing

effect on average labor productivity declines.

Second, when we assume a lower γ, we must also assume a higher p and a lower ϕ to match the

moments of job destruction. This re-calibration implies a larger role for learning in job destruction:

firms not only learn faster, but are more likely to learn that they are bad. This also gives a larger

scarring effect on average labor productivity: a faster learning pace implies a higher opportunity

cost of not allowing unsure firms to survive; a smaller prior probability of being good suggests that

learning has a greater marginal impact on cross-section efficiency.

Table 4 reports the simulation statistics of 1000 simulated 87-quarter samples when γ = 0.003.

Results when γ = 0.007 and sample statistics from data are included for comparison. Our model

with γ = 0.003 generates a correlation coefficient of 0.4819 between detrended average labor pro-

ductivity and detrended output. Productivity is strongly procyclical, almost as much as in the

data.

5 Conclusion

How do recessions affect resource allocation? This paper suggests that firm learning has important

consequences for this question. We posit that, in addition to the cleansing effect proposed by

previous authors, recessions create a scarring effect by interrupting the learning process. Recessions

kill off potentially good firms, truncate the learning process that reallocates resources into good

firms, and exacerbate the allocative inefficiency in an industry. The empirical relevance of the

scarring effect is examined in Section 4. Using data on U.S. manufacturing job flows, we find that

the scarring effect dominates the cleansing effect in the U.S. manufacturing sector from 1972 to

1993, and can account for the observed degree of procyclical productivity.

Firm size can be introduced to the current model without modifying the basic results. If firms

are allowed to choose their employment levels, both vintage and expected idiosyncratic productivity
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would affect a firm’s size positively: holding belief constant, younger firms hire more labor; holding

vintage constant, good firms are bigger. This modification will not change our results qualitatively

or quantitatively.24 Rather, it gives rise to some interesting new predictions. With good firms

bigger than unsure firms, a firm would increase its employment once it learns itself as good, so that

an additional job creation margin arises from learning. Then the exit of potentially good firms

during recessions would also reduce later job creation driven by learning. This is consistent with

the argument by Caballero and Hammour (2004) that spikes in job destruction during recessions

in the US manufacturing sector are usually followed by sluggish job creation during the recovery

phase of the cyclical downturn.

Finally, the empirical relevance of the scarring effect remains to be explored in a wider frame-

work. Our calibration exercises have focused on the U.S. manufacturing sector from 1972 to 1993,

where job destruction is documented more responsive to business cycles than job creation. However,

Foote (1997) documents that in services, fire, transportation and communications, retail trade, and

wholesale trade, job creation is more volatile than job destruction. Moreover, Hall (2005) suggests

that the recession of 2001 is dominated by sluggish creation rather than increased destruction.

Notice that, in Caballero and Hammour (1994) and in our model, the creation margin and the

destruction margin accommodate demand variations together. More responsive creation can be

generated with entry cost adjusted less sensible to entry size. The question then becomes, would

relatively more responsive job creation hurt the dominance of the scarring effect? It could, since

recessions leave “scars” by killing off potentially good firms on the destruction side. It may not,

because a larger decline in job creation also introduces fewer potentially good firms on the cre-

ation side. Whether “scarring” dominates “cleansing” in sectors other than manufacturing, or in a

recession characterized by sluggish creation, remains an interesting question.

24This is an earlier version of the model. Allowing for firm size does not change my results qualitatively. As seen
in Figure 3, as long as recessions reduce price, the exit margins will shift to younger ages, so that there is a cleansing
effect with younger average vintage, and a scarring effect with good firms in the shaded area disappearing. These
happen regardless of firm size. Neither will the quantitative results be affected. With bigger good firms, the industrial
proportion of labor at good firms is generally higher than the one in the current model, so that the decline in this
proportion brought by recessions (the scarring effect) has a smaller marginal effect on productivity. However, the
average per-labor vintage would also be higher since firms with better vintages are bigger, so that the increase in
average vintage brought by recessions (the cleansing effect) also has a smaller marginal effect on productivity. It
turns out that the scarring effect still dominates the cleansing effect in the calibration exercises. The version of the
model with firms differing in size is available upon request.
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6 Appendix

6.1 Approximating Value Functions with Krusell & Smith (1998) Approach

The key computational task is to map F , the firm distribution across ages and idiosyncratic pro-
ductivity, given demand level D, into a set of value functions V (θe, a;F,D). To make the state
space tractable, we define a variable X such that:

X (F ) =
X
a

X
θe

(1 + γ)−a · θe · f (θe, a) . (10)

Combining (9) with (6) and (7), we get

P (F,D) ·A = D

X (F 0)
.

A is the leading technology; F 0 is the updated firm distribution after entry and exit; X 0 cor-
responds to F 0; P (F,D) is the equilibrium price in a period with initial aggregate state (F,D).
Since F 0 = H(F,D), the above equation can be re-written as

P (F,D) ·A = D

X (H (F,D))

Given these definitions, the single-period profitability of a firm of idiosyncratic productivity θe and
age a, given aggregate state (F,D), equals

π (a, θ;F,D) =
D

X (H (F,D))
· (1 + γ)−a · (θ + ε)− 1. (11)

Thus, the aggregate state (F,D) and its law of motion help firms to predict future profitability
by suggesting sequences of X’s from today onward under different paths of demand realizations.
The question then is: what is the firm’s critical level of knowledge of F that allows it to predict
the sequence of X 0s over time? Although firms would ideally have full information about F , this is
not computationally feasible. Therefore we need to find an information set Ω that delivers a good
approximation of firms’ equilibrium behavior, yet is small enough to reduce the computational
difficulty.

I look for an Ω through the following procedure. In step 1, we choose a candidate Ω. In step 2,
we postulate perceived laws of motion for all members of Ω, denoted HΩ, such that Ω0 = HΩ (Ω,D).
In step 3, given HΩ, we calculate firms’ value functions on a grid of points in the state space of Ω
applying value function iteration, and obtain the corresponding industry-level decision rules — entry
sizes and exit ages across aggregate states. In step 4, given such decision rules and an initial firm
distribution. We simulate the behavior of a continuum of firms along a random path of demand
realizations, and derive the implied aggregate behavior – a time series of Ω. In step 5, we use the
stationary region of the simulated series to estimate the implied laws of motion and compare them
with the perceived HΩ; if different, we update HΩ, return to step 3 and continue until convergence.
In step 6, once HΩ converges, we evaluate the fit of HΩ in terms of tracking the aggregate behavior.
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Ω {X}

HΩ
Hx(X,Dh): logX 0 = 1.2669 + 0.8532 logX
Hx (X,Dl) : logX 0 = 2.4234 + 0.7175 logX

R2
for Dh: 0.9837
for Dl: 0.8062

standard forecast error
for Dh: 0.0000036073%
for Dl: 0.000030068%

maximum forecast error
for Dh: 0.000049895%
for Dl: 0.00074675%

Den Haan & Marcet test sta-
tistic (χ27)

0.8007

Table 5: The Estimated Laws of Motion and Measures of Fit

If the fit is satisfactory, we stop; if not, we return to step 1, make firms more knowledgeable by
expanding Ω, and repeat the procedure.

I start with Ω = {X} – firms observe X instead of F . We further assume that firms perceive
the sequence of future coming X 0s as depending on nothing more than the current observed X and
the state of demand. The perceived law of motion for X is denoted Hx so that X 0 = Hx (X,D).
We then apply the procedure described above and simulate the behavior of a continuum of firms
over 5000 periods. The results are presented in Table 5.

As shown in Table 5, the estimated Hx is log-linear. The fit of Hx is quite good, as suggested
by the high R2, the low standard forecast error, and the low maximum forecast error. The good fit
when Ω = {X} implies that firms perceiving these simple laws of motion make only small mistakes
in forecasting future prices. To explore the extent to which the forecast error can be explained
by variables other than X, we implement the Den Haan and Marcet (1994) test using instruments
[1,X, μa, σa, γa, κa, ru], where μa, σa, γa, κa,ru are the mean, standard deviation, skewness, and
kurtosis of the age distribution of firms, and the fraction of unsure firms, respectively. The test
statistic is 0.8007, well below the critical value at the 1% level. This suggests that given the
estimated laws of motion, we do not find much additional forecasting power contained in other
variables. Nevertheless, we expand Ω further to include σa, the standard deviation of the age
distribution of firms. The results when Ω = {X,σa} are shown in Table 6.

Apparently, the measures of fit do not change much. Furthermore, the impact of changes in σa
on the approximated value function is very small (less than 0.5%). This confirms that the inclusion
of information other than X improves the forecast accuracy by only a very small amount.

Figure 5 displays the value of staying for heterogeneous firms as a function of a, θe, D and
X (logX). Figure 6 displays the corresponding optimal exit ages and entry sizes. These tables
and figures suggest that our solution using X to approximate the aggregate state closely replicates
optimal firm behavior at the equilibrium. These results were robust when we experimented with
different parameterization of the model. Therefore, we use the solution based on Ω = {X} to
generate all the relevant series.
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Ω {X,σa}

HΩ

booms ( logX):
logX 0 = 0.1261 + 0.9653 logX + 0.3246σa
recessions( logX):
σ0a = 0.0079 + 0.0076 logX + 0.8988σa
booms (σa):
logX 0 = −0.1485 + 0.9291 logX + 1.0317σa
recessions(σa):

σ0a = 0.0789 + 0.0166 logX + 0.6924σa

R2

booms ( logX): 0.9940
recessions( logX): 0.9287
booms (σa): 0.9571
recessions(σa): 0.5812

standard forecast
error

booms ( logX): 0.0000069741%
recessions( logX): 0.000068307%
booms (σa): 0.00012513%
recessions(σa):0.00097406%

maximum forecast
error

booms ( logX): 0.000087730%
recessions( logX):0.0016626%
booms (σa):0.0014396%
recessions(σa):0.028074%

Den Haan &
Marcet test statis-
tic
¡
χ27
¢ 0.9216

Table 6: The Estimated Laws of Motion with two moments and Measures of Fit
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Figure 5: Expected Value of Staying: aggregate state variables areD and logX (the log of detrended
output), firm-level state variables are firm age and belief (good or unsure); the parameter choices
underlying these figures are summarized in Table 1.
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Figure 6: Industry-level Policy Functions: Entry Size and Exit Ages. Aggregate states are D
(booms or recessions) and logX (the log of detrended output).

6.2 Proof of Proposition 1

Proof. According to the condition of competitive pricing and the definition of a steady state,

D = PtAt ·
(

auP
a=0

£
θuf (θu, a) (1 + γ)−a

¤
+

agP
a=0

£
θgf (θg, a) (1 + γ)−a

¤)
(10)

with D as the time-invariant demand, f (θe, a) the time-invariant number of firms with (θe, a), and
ag, au the time-invariant exit ages for good and unsure firms. It suggests that PtAt must also be
time-invariant. We let PtAt = PA.

f (0) represents the time-invariant entry size at the steady state. Let V (θe, a) be the time-
invariant expected value of staying of a firm with belief θe and age a. The exit condition for good
firms, V (θg, ag) = 0, suggests:

θgPA (1 + γ)−ag − 1 = 0. (11)

With f (θe, a) given by all-or-nothing learning, (10) and (11) together with the steady-state struc-

33



ture as shown in Figure 2, imply

f(0) · (1 + γ)ag

θg

⎡⎢⎢⎢⎣
(θu − ϕθg)

auP
a=0

³
1−p
1+γ

´a
+ ϕθg

agP
a=0

³
1
1+γ

´a
+

ϕθg (1− p)
au+1

agP
a=au+1

³
1
1+γ

´a
⎤⎥⎥⎥⎦ = D. (12)

The free entry condition, V (θu, 0) = C (f (0)), suggests

auX
a=0

βa
∙

PAθu
(1 + γ)a

− 1
¸
λ (θu, a) +

agX
a=0

βa
∙

PAθg
(1 + γ)a

− 1
¸
λ (θg, a) = C (f (0)) . (13)

λ (θu, a) and λ (θg, a) are the probabilities of staying in operation at age a as an unsure firm and
a good firm, and are given by the all-or-nothing learning.

The exit condition for unsure firms, V (θu, au) = 0, suggests:

θuPA (1 + γ)−au − 1 + βpϕ

agX
a=au+1

βa−au−1
£
θgPA (1 + γ)−a − 1

¤
= 0 (14)

Combining (11) and (14) givesµ
θu
θg
+

pϕβ

1 + γ − β

¶
(1 + γ)ag−au = 1 +

pϕβ

1− β
− pϕβγ

(1− β) (1 + γ − β)
βag−au . (15)

(15) solves ag−au. To establish the existence and the uniqueness of the solution, let F (ag − au)
represents the left-hand side, and G (ag − au) the right-hand side of (15). It can be shown that
G0 > 0 but G00 < 0, F 0 > 0 and F 00 > 0; moreover,

F (0) < G (0) as long as
θu
θg

< 1

Since θu < θg holds by definition, F and G must cross once at a positive value of ag−au, as shown
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in the following figure

a ag u−0

( )F a ag u−

( )G a ag u−

( )F 0

( )G 0

a ag u−0

( )F a ag u−

( )G a ag u−

( )F 0

( )G 0

Hence, (15) determines a unique value for ag−au. With the value of au = ag−(ag−au) plugged
in, (12) and (13) jointly determine f(0) and ag when C 0 > 0.

Notice that with entry cost independent of entry size, C 0 = 0. (15), (12) and (13) become
recursive. (15) determines ag − au. With au = ag − (ag − au), (13) determines ag. Then (12)
determines f(0). SinceD is only present in (12), variations inD would be exclusively accommodated
by variations in f(0).

6.3 Proof of Proposition 2:

Proof. combining (12 ) with (13) and replacing au by ag − (ag − au) gives

(1 + γ)ag

θg

⎡⎢⎢⎢⎣
(θu − ϕθg)

auP
a=1

³
1−p
1+γ

´a
+ ϕθg

agP
a=1

³
1
1+γ

´a
+

ϕθg (1− p)
au+1

agP
a=au+1

³
1
1+γ

´a
⎤⎥⎥⎥⎦ ·

c−1

⎛⎜⎜⎜⎜⎜⎜⎝
(1 + γ)ag

θg

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

auP
a=1

βa

⎡⎣ (1− p)a
³

θu
(1+γ)a

− 1
´
+

ϕ (1− (1− p)a)
³

θg
(1+γ)a

− 1
´ ⎤⎦+

ϕ
³
1− (1− p)au+1

´ agP
a=au+1

βa
³

θg
(1+γ)a − 1

´
+

θu − 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠
= D

The left-hand monotonically increases in ag. Hence,
d(ag)
dD ≥ 0. With ag − au independent of D as

suggested by (8), d(au)
dD =

d(ag−(ag−au))
dD ≥ 0.

Similarly, with ag − au independent of D,
d(jdss)
dD = d(jdss)

dau
· daudD ≤ 0.
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6.4 Proof of Proposition 3:

Proof. (15) implies that ag − au is independent of D, so that

d (rg)

d (D)
=

d (rg)

d (au)
· d (au)
d (D)

Proposition 3 has established that d(au)
d(D) ≥ 0. Therefore,

d(rg)
d(D) ≥ 0 if and only if

d(rg)
d(au)

≥ 0.
With au

1−(1−p)au = x, d(rg)
d(au)

=
d(rg)
d(x) ·

d(x)
d(au)

. Since d(rg)
d(x) > 0, d(rg)

d(au)
≥ 0 if and only if d(x)

d(au)
≥ 0.

Hence, we need to prove that d(x)
d(au)

≥ 0.
1− (1− p)au is plotted in the following graph as a function of au. Since

d
³
1− (1− p)au

´
d (au)

= − (1− p)au · ln (1− p) > 0

but
d2
³
1− (1− p)au

´
d (au)

2 = − (1− p)au · (ln (1− p))2 < 0,

the curve is concave.

au

1 1− −( )p au

θ

au

1 1− −( )p au

au

1 1− −( )p au

θ

au

1 1− −( )p au

Clearly, it indicates that x = au
1−(1−p)au = cot (θ) .The concavity of the curve suggests that as

au increases, the angle of θ shrinks and cot (θ) increases. Therefore, x increases in au.
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