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1. Introduction

Recent DSGE models have proved successful in describing macroeconomic

data. Smets and Wouters (2003, 2004, 2005) have provided the first exam-

ple of a structural model that can compete in fit with unrestricted Bayesian

VARs. Christiano, Eichenbaum, and Evans (2005), Giannoni and Woodford

(2003), and Boivin and Giannoni (2005), have similarly developed models

that approximate the impulse responses derived from VARs. The success

of these papers stems from extending the simplest DSGE setup to include

several features that help in generating endogenous persistence in their mod-

els. Modern DSGE models have increasingly followed their example. They

typically incorporate habit formation in consumption, inflation and wage in-

dexation, capital adjustment costs, and several autocorrelated disturbances.

These additional sources of persistence, which we may view as “mechani-

cal”, together with persistent structural shocks are essential for the empirical

success of the models.

Milani (2004b), however, shows that allowing for a minimal deviation from

the conventional assumption of rational expectations might lead to recon-

sider the role of “mechanical” sources of persistence. In a model with sub-

jective expectations and learning, in fact, the estimated degrees of habit for-

mation in consumption and inflation indexation become negligible. Learning

also improves the fit of a monetary DSGE model: the model with learning

alone is preferred to the corresponding model with rational expectations,

habits, and indexation.

Milani (2004b), following most of the adaptive learning literature (Evans

and Honkapohja 2001, Bullard and Mitra 2002, among others), derives the

model under rational expectations, and then he introduces subjective expec-

tations and learning only on the linearized equations found under rational

expectations. But Preston (2005a) argues that introducing learning directly

from the primitives of the model would lead to different law of motions
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for inflation and output gap. The derived aggregate dynamics of the econ-

omy implies, in fact, that long-horizon expectations also matter. Preston

(2005b) explains that decision rules that depend only on one-period-ahead

expectations will generally not provide optimal decision rules under adaptive

learning for the corresponding infinite horizon decision problems. The prob-

lem arises from the use of a different conditional distribution with respect to

which expectations are taken. For example, he shows that the Euler equa-

tion under one-period-ahead learning would not satisfy the intertemporal

budget constraint and, therefore, will lead to suboptimal decisions.

In this paper, I follow Preston’s approach and build the model assuming

subjective expectations from the primitives. I generalize Preston’s frame-

work to allow for habit formation in consumption and inflation indexation in

price setting. Since Milani (2004b) shows that inserting learning in an opti-

mizing DSGE model may make typical sources of persistence redundant, it

is therefore important to verify if the results hold also when more attention

is paid to the microfoundations of the model under learning.

I therefore derive a simple monetary DSGE model that incorporates

infinite-horizon learning and mechanical sources of persistence, such as habit

formation and inflation indexation. I then estimate the model using Bayesian

methods. The paper provides the first estimation in the literature of a DSGE

model with infinite-horizon learning. The main learning parameter, the con-

stant gain, is jointly estimated with the ‘deep’ parameters of the economy.

Estimation of the constant gain is crucial, for the empirical results often

depend on the assumed gain, as shown in Milani (2004a), for example.

I find that infinite-horizon learning can generate substantial persistence

in the model. When agents form subjective expectations and learn the

relevant parameters, I find that the role of habit formation and indexation

becomes smaller. Inflation indexation is superfluous. The persistence in

inflation appears to be driven more by learning than by structural features
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such as indexation. Learning, in fact, substitutes for both indexation and

a strong serial correlation in the exogenous cost-push shock. The results

are less sharp for habit formation. In this case, the results depend on the

assumed persistence in the aggregate demand disturbance. With a large

autoregressive coefficient, habit formation becomes redundant. But with a

small autoregressive coefficient, the model still needs a sizeable coefficient

on habits to match the data.

2. A Microfounded Model with Adaptive Learning

I derive the aggregate dynamics of the economy introducing learning di-

rectly from the primitives of the model, as in Preston (2005a). This section

generalizes Preston (2005a) by incorporating also habit formation in con-

sumption and inflation indexation in price setting. In the model, agents

know: 1) their own preferences; 2) the constraints they face; 3) how to

solve their optimization problems. But they do not have any knowledge of

other agents’ preferences. Therefore, they are not able to infer the aggregate

probability laws of the variables of interest, as they would be, instead, under

rational expectations. To derive optimal decisions, agents need to form ex-

pectations about future macroeconomic variables. Here, I depart from the

strong informational assumptions required by rational expectations, and I

allow agents to form arbitrary subjective expectations.

2.1. Households’ Optimal Consumption Decisions. The economy is

populated by a continuum of households indexed by i ∈ [0, 1]. Each house-

hold i maximizes the expected discounted utility

bEi
t

( ∞X
T=t

βT−t
∙
U
¡
Ci
T − ηCi

T−1; ζT
¢
−
Z 1

0
v(hiT (j); ζT )dj

¸)
(2.1)

where bEi
t indicates subjective expectations for household i. Households de-

rive utility from the deviation of current consumption Ci
T from a stock

of internal habits in consumption ηCi
T−1, and they derive disutility from
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the hours of labor supplied hiT (j). An aggregate shock ζT may affect the

consumption-leisure decision in each period. The coefficient 0 < β < 1

denotes the usual discount factor, while η measures the degree of habit for-

mation in consumption. The consumption index Ci
T is the Dixit-Stiglitz

CES aggregator of different goods, so that Ci
t ≡

hR 1
0 c

i
t(j)

θ−1
θ dj

i θ
θ−1 , and the

associated price index is Pt ≡
hR 1
0 pt(j)

1−θdj
i 1
1−θ
, where θ is the elasticity of

substitution between differentiated goods. For simplicity, I assume homo-

geneous beliefs across agents (although this is not known to agents, who do

not have any information about other agents’ beliefs). As standard in the

adaptive learning literature, the subjective expectations of individual agents

obey the law of iterated expectations, bEi
t
bEi
t+sz = bEi

tz for any variable z.

I follow Preston (2005a) in assuming incomplete asset markets.1 Agents

can use a single one-period riskless asset to transfer wealth intertemporally.

The flow budget constraint is given by:

M i
t +Bi

t ≤ (1 + imt−1)M
i
t−1 + (1 + it−1)B

i
t−1 + PtY

i
t − Tt − PtC

i
t (2.2)

where M i
t denotes end-of-period money holdings, B

i
t end-of-period riskless

bond holdings, imt and it denote nominal interest rates on money and bonds,

and Tt are lump sum taxes and transfers. Y i
t is household’s real income in

period t, given by
R 1
0

£
wt (j)h

i
t (j) +Πt (j)

¤
dj, where wt (j) represents the

wage received by the household for labor supplied in the production of good

j and Πt (j) the share of profits received from the sale of each firm’s good j

(households own an equal share of all the firms).

The intertemporal budget constraint (IBC) is

bEi
t

∞X
T=t

βT−tCi
T = ωit + bEi

t

∞X
T=t

βT−tY i
T (2.3)

where ωit ≡
W i
t

PtY
is the share of nominal wealth (W i

t ≡ (1 + it−1)Bi
t−1) as

a fraction of nominal steady-state income. With habit formation, the first

1This assumption limits the extent of information revelation from prices.
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order conditions become

λit = Uc

¡
Ci
T − ηCi

T−1; ζT
¢
− βη bEi

t

£
Uc

¡
Ci
T+1 − ηCi

T ; ζT+1
¢¤

(2.4)

λit = β bEi
t

£
λit+1(1 + it)Pt/Pt+1

¤
(2.5)

where λit is the marginal utility of real income in period t. Substituting

(2.4) into (2.5), and taking a log-linear approximation of the implied Euler

equation, I obtain

eCi
t = bEi

t
eCi
t+1 − (1− βη)σ

³
it − bEi

tπt+1

´
+ gt − bEi

tgt+1 (2.6)

where eCi
t = Ci

t − ηCi
t−1 − βη bEi

t

£
Ci
t+1 − ηCi

t

¤
(2.7)

and where σ ≡ −Uc
(CUcc)

> 0 represents the elasticity of intertemporal substi-

tution of consumption in the absence of habit formation, and gt ≡ σUcζζt
Uc

is a

preference shock. Solving (2.6) backwards, taking expectations, substituting

into the modified IBC,2 using Ct = Yt, and expressing everything in terms

of the output gap xt ≡ Yt − Y n
t yields the aggregate demand equation3

ext = bEt

∞X
T=t

βT−t [(1− β)exT+1 − (1− ηβ)σ (iT − πT+1 − rnT )] (2.8)

where

ext ≡ (xt − ηxt−1)− βη bEt (xt+1 − ηxt)

and where Y n
t is the natural rate of output (the equilibrium level of output

under flexible prices) and rnT ≡ [(1− ηβ)σ]−1
£¡
Y n
t+1 − gt+1

¢
− (Y n

t − gt)
¤
is

the flexible-price equilibrium real interest rate. Current output gap, there-

fore, depends on lagged and expected one-period ahead output gap, on the

ex-ante real interest rate, plus on long-horizon forecasts of future output

gaps, real interest rates, and disturbances until the indefinite future.

2Found by substituting Ci
t = Ci

t + ηCi
t−1 + βηEi

t Ci
t+1 − ηCi

t into the IBC.
3In the derivation, I also use

i
ωitdi = 0 from bond’s market clearing, and I integrate

over the i households, using Ct = i
Ci
tdi, Yt = i

Y i
t di, and Et [·] ≡ i

Ei
t [·] di, which

denotes average private-sector expectations.
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2.2. Firms’ Problem. I assume Calvo price-setting. A fraction 0 < 1−α <

1 of firms can set prices optimally in a given period t. The remaining α firms

that are not allowed to optimize in t can still adjust their prices following

the indexation rule proposed by Christiano, Eichenbaum and Evans (2005):

log pt(i) = log pt−1(i) + γπt−1 (2.9)

where the parameter 0 ≤ γ ≤ 1 measures the degree of indexation to past

inflation. The aggregate price index Pt evolves according to

Pt =

"
α

µ
Pt−1

µ
Pt−1
Pt−2

¶γ¶1−θ
+ (1− α)p∗1−θt

# 1
1−θ

. (2.10)

Each firm i maximizes the expected present discounted value of future

profits ΠiT (·)

bEi
t

( ∞X
T=t

αT−tQt,T

∙
ΠiT

µ
p∗t (i)

µ
PT−1
Pt−1

¶γ¶¸)
(2.11)

where a unit of income in date T is valued by the stochastic discount factor

Qt,T = βT−t PtPT
λT
λt
.

The first-order conditions for the problem are

bEi
t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞X
T=t

(αβ)T−t λTYTP θ
T

³
PT−1
Pt−1

´γ(1−θ)
·∙

p∗t (i)− µPT s

µ
YT

³
p∗t (i)
PT

´−θ ³PT−1
Pt−1

´−γθ
, YT ;eζT¶¸

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0 (2.12)

where µ = θ/(θ − 1) > 1, eζt is a vector of exogenous real disturbances
incorporating both preference shocks ζt and technology shocksAt, and where

s (·) is firm i’s real marginal cost function.

Log-linearization of the first-order condition yields

bp∗t (i) = bEi
t

∞X
T=t

(αβ)T−t
∙
1− αβ

1 + ωθ

µ
ωYT − λiT +

vyζ
vy

ζT

¶
+ αβ (πT+1 − γπT )

¸
(2.13)

where bp∗t ≡ log (p∗t /Pt) and ω ≡ vyyY /vy is the elasticity of the marginal

disutility of producing output with respect to an increase in output.
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From a log-linear approximation of the aggregate price index and inte-

grating over the i firms, I can derive the aggregate supply relation

eπt = ξp

³
ωxt + [(1− ηβ)σ]−1 ext´+ bEt

∞X
T=t

(αβ)T−t (2.14)h
αβξp

³
ωxT+1 + [(1− ηβ)σ]−1 exT+1´+ (1− α)βeπT+1 + uT

i
where

eπt ≡ πt − γπt−1

ext ≡ (xt − ηxt−1)− βη bE (xt+1 − ηxt)

ξp =
(1− α) (1− αβ)

α (1 + ωθ)

Current inflation therefore depends on lagged inflation, current, lagged and

one-period ahead output gaps, and on the long-horizon forecasts of future

output gaps, inflation rates, and supply shocks. Deviations of the empirical

output gap from the theoretically relevant gap will show up in the supply

shock ut.

2.3. Monetary Authority. I assume that the following Taylor rule with

partial adjustment describes monetary policy in this economy

it = ρit−1 + (1− ρ) [χππt + χxxt] + εt

where ρ denotes the degree of interest-rate smoothing, ψπ and ψx are feed-

back coefficients, and εt accounts for unanticipated deviations from system-

atic monetary policy.

3. Infinite-Horizon Learning

With learning introduced as in Preston (2005a,b), long-horizon expec-

tations also matter. In the previous section, I have generalized Preston’s

framework to include habit formation and indexation. The model economy
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can be summarized as

ext = bEt

∞X
T=t

βT−t [(1− β) exT+1 − (1− ηβ)σ(iT − πT+1 − rnT )] (3.1)

eπt = bEt

∞X
T=t

(αβ)T−t
h
ξp

³
ωxT + [(1− ηβ)σ]−1 exT´+ (3.2)

+(1− α)βeπT+1 + uT ]

it = ρit−1 + (1− ρ) [χππt + χxxt] + εt (3.3)

rnt = φrr
n
t−1 + νrt (3.4)

ut = φuut−1 + νut (3.5)

where ext and eπt have the usual meaning. I have assumed that the distur-
bances rnt and ut follow autoregressive processes. The shocks εt, νrt , ν

u
t are

i.i.d. Normal with mean 0 and variance-covariance matrix Q.4

From (3.1) and (3.2), it is clear that economic agents need to form fore-

casts of macroeconomic variables until the indefinite future. I follow a num-

ber of papers in the adaptive learning literature (see Evans and Honkapohja

2001 for a comprehensive treatment) and assume that agents use simple lin-

ear economic models to form expectations. The agents have the following

“Perceived Law of Motion” (PLM)

Zt = at + btZt−1 + ctr
n
t + dtut + εt, (3.6)

where Zt ≡ [πt, xt, it]0 and at, bt, ct, dt are coefficient vectors and matrices of

appropriate dimensions. The PLM has the same structural form of the ratio-

nal expectations solution of the system, i.e. it includes the same regressors

that appear in the Minimum State Variable (MSV) solution under rational

expectations. The agents, however, lack knowledge about the parameters of

the model. Therefore, they use historical data to learn the parameters over

4When learning is introduced on the linearized equations found under RE, the aggregate

demand and supply equations become xt = Etxt+1 − (1 − βη)σ it −Etπt+1 − rnt and

πt = ξp ωxt + [(1− ηβ)σ]−1 xt + βEtπt+1 + ut. I refer the reader to Preston (2005a,b)
and Honkapohja, Mitra, and Evans (2003), for a discussion of the different approaches.
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time. As soon as they observe additional data, agents update their esti-

mates of the parameter vector (at, bt, ct, dt) through constant-gain learning,

as described by the following formulas

bφt = bφt−1 + gR
−1
t−1Xt(Zt −X 0

t
bφt−1) (3.7)

Rt = Rt−1 + g(Xt−1X
0
t−1 −Rt−1) (3.8)

where (3.7) describes the updating of the learning rule coefficients bφt =

(a0t, vec(bt, ct, dt)
0)0, and (3.8) describes the updating of the matrix of sec-

ond moments Rt of the stacked regressors Xt ≡ {1, Zt−1, ut, rnt }t−10 . The

parameter g denotes the constant gain, which indicates the speed at which

agents update their beliefs. From their PLM, and using the updated para-

meters through (3.7) and (3.8), agents can form expectations for any future

horizon T > t as

bEtZT = (I5 − bt−1)
−1(I5 − bT−tt−1 )at−1 + bT−tt−1EtZt + (3.9)

+φrr
n
t (φrI5 − bt−1)

−1(φT−tr I5 − bT−tt−1 )ct−1 +

+φuut(φuI5 − bt−1)
−1(φT−tu I5 − bT−tt−1 )dt−1

where I5 is a 5× 5 identity matrix.

4. Bayesian Estimation

The paper provides the first empirical analysis of a model with Infinite-

Horizon learning. I estimate the system using Bayesian methods to fit the

series for output gap, inflation and the nominal interest rate. I use quarterly

U.S. data for the period 1960:I to 2004:II. Inflation is defined as the annu-

alized quarterly rate of change of the GDP Implicit Price Deflator, output

gap as the log difference between GDP and Potential GDP (CBO estimate),

and I use the federal funds rate as the nominal interest rate.

The main learning parameter, the constant gain, is estimated jointly with

the deep parameters of the economy. I can substitute the expectations

formed as in (3.9) into (3.1) and (3.2) and re-write the model in state-space
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form

ξt = At + Ftξt−1 +Gtwt (4.1)

Yt = Hξt

where ξt = [xt, πt, it, ut, r
n
t ], wt ∼ N(0, Q), H is a matrix of zeros and ones

selecting observables from ξt, and At, Ft, Gt are time-varying matrices of

coefficients, which are convolutions of structural parameters of the economy

and agents’ beliefs. Expression (4.1) represents the “Actual Law of Motion”

(ALM) of the economy: the ALM has the same structural form as the

PLM, but possibly different parameter values. Having expressed the model

as a linear Gaussian system, I can evaluate the likelihood function using

the Kalman Filter. To derive the parameter estimates, I use a Random-

Walk Metropolis-Hastings algorithm to generate draws from the posterior

distribution.5 I generate 300, 000 draws with an initial burn-in of 60, 000

draws. A similar estimation procedure has been used by several recent

papers that focus on DSGE models under rational expectations (see An and

Schorfheide (2006) for a first survey of this literature). This paper, instead,

exploits similar techniques to provide the first estimation of a DSGE model

with infinite-horizon learning.

I collect the structural parameters in the vector Ψ:

Ψ =
©
η, β, α, σ, γ, ξp, ω, ρ, χπ, χx, φr, φu, σε, σr, σu, σε,r, σε,u, σr,u,g

ª
I fix some of the parameters: β = 0.99, ξp = 0.0015, and ω = 0.8975 (ξp

and ω are fixed at the values estimated in Giannoni and Woodford 2003 for

the flexible wages case). I fix the autoregressive parameters φr and φu to

0.9 (I will also consider the case φr = φu = 0.1).

Table 1 presents information about the priors. The habit and indexa-

tion parameters η and γ are assumed to follow Uniform distributions in

the interval [0, 1]. The intertemporal elasticity of substitution coefficient

5More details about the estimation method can be found in Milani (2004b).
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σ follows a Gamma distribution with mean 0.125 and standard deviation

0.09. I choose inverse gamma distributions for the standard deviations of

the shocks. The constant-gain coefficient follows a Gamma distribution with

prior mean 0.031 and prior standard deviation 0.022.

I estimate the initial conditions for the learning algorithm using pre-

sample data for the 1954:III-1959:IV period. The evolution of agents’ beliefs

is shown in figure 1 and 2, together with the 95% probability bands. For

example, we see that agents perceive inflation as more persistent starting in

the second half of the 1970s until the first half of the 1980s (parameter b22),

and they perceive a smaller sensitivity of output to interest rates after 1980

(parameter b13).

Table 1 presents the estimation results. First, I assume that the autore-

gressive coefficients regarding the disturbances rnt and ut equal 0.9. I find

very weak evidence of habit formation in consumption and no evidence of

indexation in inflation. I estimate, in fact, η, the habit parameter, equal to

0.113, while I estimate γ, the inflation indexation parameter, equal to 0.009.

The two parameters are tightly estimated: the 95% posterior probability

intervals also remain close to zero. Therefore, infinite-horizon learning ap-

pears to account for the persistence in the data. Additional “mechanical”

sources of persistence, which are essential under rational expectations, be-

come superfluous under learning. Under infinite-horizon learning, however,

the estimate of α, the Calvo price-stickiness parameter, is unrealistic: I find

α equal to 0.992, which implies an extreme degree of rigidity in prices. I

obtain a value of 0.067 for the intertemporal elasticity of substitution para-

meter σ. The estimates for the monetary policy rule ballpark most estimates

in the literature (ρ = 0.91, χπ = 1.52, and χx = 0.68). A crucial parame-

ter in the estimation is represented by the constant-gain parameter. The

paper estimates the constant gain jointly with the deep parameters of the

economy. I estimate the gain equal to 0.006. To get some intuition about
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this value, it may be useful to think about the gain as a rough indication

of how many observations agents use to form their expectations. A gain

equal to 0.006, therefore, mimics the situation of an econometrician running

rolling-window regressions using a window with 1/0.006 observations (corre-

sponding to 166. 67 quarters of data, or 41. 668 years). The estimated value

implies a substantially slower learning than what found in Milani (2004a,b,

2005a) assuming only one-period ahead expectations.

Infinite-horizon learning, therefore, weakens the role of habits and index-

ation in a model where the disturbances are highly persistent. But can

learning also substitute for the typically strongly autocorrelated structural

disturbances? Here, I re-estimate the model by fixing the autoregressive

parameters φr and φu to 0.1. I obtain different results for habits and in-

dexation. In the case of habits, the results seem to depend on the assumed

persistence of the disturbances. When the assumed autocorrelation is low, a

large degree of habit formation in consumption is still needed to fit the data

(I find η = 0.87). The results are more favorable for inflation indexation.

Even assuming a low autocorrelation of the disturbances, the estimated in-

dexation is small (I estimate γ = 0.21). The results suggest that learning

matters for inflation dynamics. A minimal deviation from rational expec-

tations is sufficient to account for the persistence in inflation, so that both

indexation and a strongly autocorrelated cost-push shock become redundant.

The estimated Calvo parameter α is now small: I find α equal to 0.19 in

this case, suggesting a much smaller price rigidity. The results about α are

therefore strongly dependent on the assumed autocorrelation and suggest

difficulties in robustly identifying this parameter. I obtain different results

also for the constant gain. Now, the gain coefficient equals 0.017. This

estimate implies faster learning than in the previous case and is more sim-

ilar to what found by Milani (2004a,b, 2005a). In general, various recent

papers (Milani 2004a,b, 2005a, Orphanides and Williams 2005a,b, Branch
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and Evans 2005) are starting to accumulate evidence that the most realistic

values of the gain lie in the 0.01−0.05 range, with the majority of estimates

around 0.02.

I also re-estimate the model under Recursive Least Squares learning: this

implies a decreasing gain equal to t−1. The results substantially confirm

what found under constant-gain learning. When the autocorrelation of the

shocks is large, I estimate η = 0.059 and γ = 0.01. The Calvo price-

stickiness parameter is now slightly less extreme (α = 0.911). When, the

autocorrelation is small, instead, I find η = 0.786 and γ = 0.134. The Calvo

parameter is again reduced to 0.18.6

5. Conclusions

DSGE models under rational expectations typically need several addi-

tional sources of persistence to match macroeconomic data. In the paper,

I have developed a model in which non-rational expectations and learning

enter from the primitive assumptions. As in Preston (2005a), the aggregate

dynamics of the economy implies that long-horizon expectations of future

macroeconomic conditions matter for the current dynamics of output, infla-

tion, and nominal interest rates. The model, therefore, nests infinite-horizon

learning and some of the “mechanical” sources of persistence, such as habit

formation and inflation indexation, that are essential under rational expec-

tations. Once the assumption of rational expectations is relaxed in favor

of learning, it becomes interesting to verify whether mechanical sources of

persistence remain essential for the model fit.

I estimate the model using Bayesian methods. I obtain estimates of the

main learning parameter, the constant gain, jointly with the other model

parameters.

6I do not report the results, but I have found that the model with constant-gain learning
fits better than the model with RLS learning.
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The results show that learning may render additional sources of persis-

tence superfluous. Learning seems to represent the main cause of persistence

in inflation: with learning, the estimated indexation is very close to zero.

The results do not depend on the assumed autocorrelation of the shocks.

Infinite-horizon learning generates sufficient persistence in inflation, so that

it might be possible to avoid both indexation and serial correlation in the

cost-push shock. The results are, instead, mixed for habit formation: learn-

ing and strongly autocorrelated shocks substantially weaken the evidence

of habit formation. But the results in this case depend on the assumed

autocorrelation. A low autocorrelation restores, in fact, a role to habit for-

mation.

Overall, learning seems to provide a good description of the data. But the

literature still needs to shed more light on the best way to model learning. In

related research, I am comparing the estimates and fit of DSGE models un-

der different learning mechanisms: one-period-ahead versus infinite-horizon

learning, constant-gain versus recursive-least-squares learning, and different

learning rule specifications. Moreover, as Preston (2004a,b) shows, mone-

tary policy rules may have very different properties under different learning

mechanisms. A priority for future research, therefore, will consist of evalu-

ating the robustness of policy rules to different assumptions about learning.
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Prior Distribution Posterior Distribution

Constant-Gain Learning RLS Learning

Description Param. Range Distr. Mean 95% Int. Mean 95% Int. Mean 95% Int. Mean 95% Int. Mean 95% Int.

Habit Formation η [0, 1] U .5 [.025, .975] .113 [.14, .23] .87 [.72, .97] .059 [.002, .15] .786 [.64, .92]
Discount Rate β .99 − .99 − .99 − .99 − .99 − .99 −
Calvo Parameter α [0, 1] U .5 [.025, .975] .992 [.97, .999] .19 [.02, .42] .911 [.80, .98] .18 [.02, .43]
IES σ R+ G .125 [.015, .35] .067 [.04, .10] .144 [.04, .36] .077 [.04, .12] .239 [.09, .44]
Infl. Indexation γ [0, 1] U .5 [.025, .975] .009 [0, .033] .216 [0, .77] .01 [0, .038] .134 [.005, .43]
Fcn. of Price Stick. ξp .0015 − .0015 − .0015 − .0015 − .0015 − .0015 −
Elasticity mc ω .8975 − .8975 − .8975 − .8975 − .8975 − .8975 −
Interest-Rate Smooth ρ [0, .97] U .485 [0.024, 0.946] .91 [.87, .95] .885 [.83, .93] .903 [.86, .94] .877 [.83, .92]
Feedback to Infl. χπ R N 1.5 [1.01, 1.99] 1.523 [1.14, 1.92] 1.496 [1.14, 1.87] 1.58 [1.21, 1.95] 1.63 [1.29, 1.99]
Feedback to Output χx R N .5 [.01, .99] .681 [.30, 1.08] .56 [.18, .97] .66 [.23, 1.04] .54 [.19, .95]
Autocorr. rnt φr .9 or .1 − .− − .9 − .1 − .9 − .1 −
Autocorr. ut φu .9 or .1 − .− − .9 − .1 − .9 − .1 −
Std. MP shock σε R+ IG 1 [.34, 2.81] .889 [.8, .99] .89 [.8, .99] .887 [.8, .98] .891 [.8, .99]
Std. rnt σr R+ IG 1 [.34, 2.81] .856 [.77, .95] .82 [.74, .92] .844 [.76, .94] .882 [.8, .98]
Std. ut σu R+ IG 1 [.34, 2.81] 1.56 [1.4, 1.73] 1.47 [1.18, 2.1] 1.578 [1.42, 1.76] 1.36 [1.13, 1.72]
Cov εt, r

n
t σε,r [−.5, .5] U 0 [−.475 , .47 5] .04 [−.09, .17] −.08 [−.27, .06] .04 [−.11, .17] −.008 [−.15, .13]

Cov εt, ut σε,u [−.5, .5] U 0 [−.475 , .47 5] .315 [.17, .46] .29 [.16, .43] .312 [.17, .47] .32 [.17, .45]
Cov rnt , ut σr,u [−.5, .5] U 0 [−.475 , .47 5] .03 [−.13, .18] −.06 [−.23, .11] −.025 [−.19, .12] −.07 [−.23, .09]
Constant Gain g R+ G .031 [.0038, .087] .006 [.0014, .01] .017 [.007, .036] − − − −

Table 1 - Bayesian DSGE Model with Infinite-Horizon Learning: prior distributions, posterior estimates, and 95% probability intervals.
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Figure 1 - Agents’ time-varying beliefs 1960:I-2004:III (Autoregressive parameters = 0.9, CGL).

The learning rule is:"
xt
πt
it

#
=

"
b11,t b12,t b13,t
b21,t b22,t b23,t
b31,t b32,t b33,t

#"
xt−1
πt−1
it−1

#
+

"
c1,t
c2,t
c3,t

#
rnt +

"
d1,t
d2,t
d3,t

#
ut + εt.
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Figure 2 - Agents’ time-varying beliefs 1960:I-2004:III (Autoregressive parameters = 0.1, CGL).

The learning rule is:"
xt
πt
it

#
=

"
b11,t b12,t b13,t
b21,t b22,t b23,t
b31,t b32,t b33,t

#"
xt−1
πt−1
it−1

#
+

"
c1,t
c2,t
c3,t

#
rnt +

"
d1,t
d2,t
d3,t

#
ut + εt.


