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Abstract

This paper studies the Minimum Divergence (MD) class of estimators for economet-

ric models specified through moment restrictions. We show that MD estimators can be

obtained as solutions to a computationally tractable optimization problem. This prob-

lem is similar to the one solved by the Generalized Empirical Likelihood estimators of

Newey and Smith (2004), but it is equivalent to it only for a subclass of divergences.

The MD framework provides a coherent testing theory: tests for overidentification and

parametric restrictions in this framework can be interpreted as semiparametric versions

of Pearson-type goodness of fit tests. The higher order properties of MD estimators are

also studied and it is shown that MD estimators that have the same higher order bias as

the Empirical Likelihood (EL) estimator also share the same higher order Mean Square

Error and are all higher order efficient. We identify members of the MD class that are not

only higher order efficient, but, unlike the EL estimator, well behaved when the moment

restrictions are misspecified.
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1 Introduction and Motivations

Econometric models are often postulated in terms of moment restrictions:

∫
q(w, θ0)F (dw) = 0, (1)

where w ∈ W ⊆ R
L is a random vector with unknown probability distribution F , and q(w, θ)

is an M×1 vector of functions of w and the parameter θ ∈ Θ ⊂ R
K , q : W×Θ 7→ R

M . Given a

random sample from w, (w1, . . . , wN ), the objective is to estimate θ0. Simultaneous systems of

equations, dynamic panel data, and many other models frequently employed in econometrics

have a formulation equivalent to (1).

The traditional way of estimating θ0 is by the Generalized Method of Moments (GMM) of

Hansen (1982). GMM estimators are consistent and asymptotically normal in a broad array

of setups (see, among others, Gallant and White (1988) and Newey and McFadden (1994)).

Despite GMM’s desirable asymptotic properties and limited computational requirements, there

has been increasing concern over its performance in applications. A vast literature documents

that inference based on GMM has unsatisfying finite sample performance (see the articles in

the 1996 special issue of the Journal of Business and Economic Statistics).

New estimators have been proposed that tend to perform better than GMM in some set-

tings. The Continuous Updating Estimator (CUE) of Hansen et al. (1996), the Empirical

Likelihood (EL) estimator of Qin and Lawless (1994) and Imbens (1997), and the Exponential

Tilting (ET) of Kitamura and Stutzer (1997) are three of the most known examples.

Hansen et al. (1996) show through Monte Carlo simulations that CUE is nearly median

unbiased. Simulations in Imbens (2002) suggest that EL and ET estimators have lower bias

than GMM in nonlinear models. Mittelhammer et al. (2005) find that EL has lower bias than

two-stage least squares in linear structural models. Imbens et al. (1998) present Monte Carlo

evidence on the performance of the overidentified test statistics based on EL, ET and CUE, and

find them to have lower size distortion than corresponding GMM statistics. Kitamura (2001)

shows that EL is optimal in terms of large deviations for testing overidentified restrictions. EL

has been adapted to a wide array of settings. Notably, Guggenberger and Smith (2005) explore

the behavior of EL in the weak instrumental variables scenario. Kitamura et al. (2004) apply

EL to models defined through smooth conditional moment restrictions. Both ? and Whang

(2006) apply EL to the estimation of parameters identified by conditional quantile restrictions.

Newey and Smith (2004) (NS henceforth) study the theoretical properties of EL, ET, CUE

by embedding them into the Generalized Empirical Likelihood (GEL) class of estimators.

They show that all GEL estimators have lower asymptotic bias than GMM. In particular,

EL has the smallest higher order bias, and it is also second order efficient in the sense of
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Pfanzagl and Wefelmeyer (1979), suggesting that EL is a preferable member of the GEL class

under the higher order bias/efficiency criterion.

This paper studies the properties of the Minimum Divergence (MD) class of estimators for

parameters satisfying moment restrictions like (1). First, we show that MD estimators can be

obtained as the solution to a saddle point problem whose criterion function is very similar to

the one that GEL estimators optimize. However, the MD framework encompasses the GEL

one: using convex analysis arguments, we derive the condition under which the GEL and

MD estimators coincide. Second, we show that the equivalence between MD estimators and

solution to an optimization problem is complete: not only any MD estimator can be interpreted

as solving a saddle point problem for a given criterion function; for any criterion function and

corresponding saddle point problem, there exists an underlying MD problem whose solution is

the same as the one to the saddle point problem.

The perfect equivalence between MD estimators and solutions to a saddle point prob-

lem has interesting implications. Expressing the estimation problem in terms of divergence

minimization is particularly appealing from a statistical point of view, since it provides a

framework to understand the analogy between testing theory developed for parametric models

and testing theory appropriate to the semiparametric setting considered here. Specifically, we

show that overidentification test statistics based on the saddle point criterion functions are

semiparametric versions of Pearson-type goodness of fit tests.

We also study the higher order efficiency properties of MD estimators. We show that MD

estimators with the same higher order bias as EL also share the same higher order Mean Square

Error (MSE). In light of the EL efficiency result in NS, this implies that there are many higher

order efficient estimators in the MD class.

Since higher order considerations alone are not sufficient for selecting a member of the MD

class of estimators to be used in applications, we turn to robustness to misspecification as

an additional criterion. Results in Schennach (2007) suggest that if the moment restrictions

are misspecified, the EL estimator may be ill-behaved and may not be
√
N -consistent. The

existence of higher order efficient estimators in the MD class distinct from the EL estimator

allows us to identify estimation procedures that are higher order efficient and behave well

under misspecification.

A word on notation. If A is a matrix, ‖A‖ =
√

TrAA′ denotes its Frobenious norm. This

reduces to the usual Euclidean norm when A is a vector. Throughout the paper, vectors

are columns unless transposed. Random vectors and their realizations are denoted by lower

case letters. All limits are taken as N → ∞. The qualifiers “with probability one" and

“with probability approaching one” are abbreviated as “w.p.1" and “w.p.a.1”, respectively.

The symbols Op and op are the stochastic order symbols. Finally, the following notation for

functions and their derivatives is used. If f is a function f : R 7→ R, fr(x) := drf(x)/drx,
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for all r = 1, 2, . . . for which f is differentiable. If the inverse function of f is defined, we set

f̃(x) := f−1(x); similarly, for the inverse of the derivatives of f , we set f̃r(x) := f−1
r (x).

2 Minimum Divergence Estimators

Given a random sample of size N (w1, . . . wN ), a Minimum Divergence estimator for the

parameter vector θ0 that satisfies (1) is the solution to

min
θ∈Θ,π1,...,πN

N∑

i=1

γ(Nπi)/N, γ ∈ Fγ ,

s.t.

N∑

i=1

πiq(wi, θ) = 0,

N∑

i=1

πi = 1, Nπi ∈ Dγ , (2)

where Fγ denotes the class of convex and twice continuously differentiable divergence functions,

γ : Dγ ⊆ R 7→ R+ with Dγ convex and int(Dγ) = (aγ , bγ), aγ < 1 < bγ ; γ(1) = 0, γ1(1) = 0,

γ2(x) > 0 for x ∈ (aγ , bγ), γ2(1) = 1. A strictly positive second derivative in the interior of

the domain implies that any γ ∈ Fγ is strictly convex. Note that γ(1) = 0 and γ2(1) = 1

are normalizations that are not restrictive. Let ρ : Dρ ⊆ R 7→ R+ be convex and twice

continuously differentiable on the convex set Dρ, ρ2(x) > 0, for x ∈ int(Dρ). If ρ does not

satisfy the normalizations, the function ρ̄(x) := ρ(x)/ρ2(1)−xρ(1)/ρ2(1)−ρ(0)/ρ2(1) will and

ρ̄ ∈ Fγ .
The MD problem in (2) defines a collection of estimators indexed by γ ranging in Fγ .

Notably, it encompasses the EL estimator, for γel(x) = − lnx + x − 1, the ET, for γet(x) =

x lnx−x+1, the CUE, for γcue(x) = x2/2−x+ .5, and estimators based on the Cressie-Read

family of divergences (Cressie and Read, 1984), for γcr(x;α) = xα+1−1
α(α+1) − 1

αx+ 1
α , α 6= {0,−1}.1

The Fisher consistency of the MD procedure can be shown heuristically as follows. The

function
∑N

i=1 γ(Nπi)/N is minimized when πi = N−1, (i = 1, . . . , N). From all the feasible

vectors (π1, . . . , πN ) and parameters θ ∈ Θ, the MD problem will select a θ that gives a

weighting that is the closest to assigning N−1 to each sample point. As N → ∞, the moment

restrictions in (1) imply that θ ≈ θ0 and πi ≈ N−1 will solve (2). Intuitively, since γ(1) = 0

for all γ ∈ Fγ , the specific member of Fγ used in the procedure does not determine the first

order asymptotic behavior of the estimator; features of γ in a neighborhood of 1 do, however,

determine the finite sample properties of the estimator.

Corcoran (1998) analyzes problem (2) when the moment function does not depend on θ,

with q(w, θ) = w. In this case, the optimization takes place only over the weights (π1, . . . , πN ).

1It should be noted that for some values of α, γcr is not (strictly) convex everywhere on its domain. In these
cases, we restrict γcr to be defined on the largest convex interval containing 1 on which γcr is strictly convex.
For instance, for α = 2, γcr is strictly convex on (0,+∞), so we consider γcr(·, 2) : Dγ 7→ R, Dγ = [0,+∞).
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A precursor of the MD class estimators is the generalized minimum contrast class of estimators

studied by Bickel (1998, Ch. 7) and Pfanzagl (1979).

In the exactly identified case, M = K, if there exists a θ̇ ∈ Θ such that
∑N

i=1 q(wi, θ̇)/N =

0, then the MD estimator of θ0 is θ̇ and the optimal weights are given by πi = N−1 (i =

1, . . . N). Thus, in this case, the MD estimator coincides with the Method of Moment estima-

tor.

Problem (2) is feasible if the set C(θ) = {yi ∈ Dγ , i = 1 . . . , N :
∑N

i=1 yiqi(wi, θ) = 0} is

non empty for at least some θ ∈ Θ. If aγ < 0, then the problem is always feasible, that is, C(θ)

is non empty for all θ ∈ Θ. If aγ = 0 or aγ > 0, then, for a given sample of N observations on

w, the set C(θ) may be empty for all θ ∈ Θ.

The solution to the MD problem is not in general unique in θ. Strict convexity of γ does,

however, imply that the optimal πi’s are unique. Suppose that θ̇, θ̈ ∈ Θ both minimize (2),

that is
∑N

i=1 γ(Nπi(θ̇))/N =
∑N

i=1 γ(Nπi(θ̈))/N , where πi(θ̇) and πi(θ̈), (i = 1, . . . , N), denote

the optimal weights that correspond to θ̇ and θ̈. We have that π̄i := ζπi(θ̇) + (1 − ζ)πi(θ̈)

is feasible for any 0 ≤ ζ ≤ 1. However, strict convexity of γ implies that
∑N

i=1 γ(Nπ̄i) <

ζ
∑N

i=1 γ(Nπi(θ̇)) + (1 − ζ)
∑N

i=1 γ(Nπi(θ̈)), which is a contradiction. Thus, πi(θ̇) = πi(θ̈)

(i = 1, . . . , N).

2.1 First Order Conditions

In the overidentified case, M > K, the solution to (2) can, under some conditions, be obtained

through the method of Lagrange multipliers. The Lagrangian of the constrained optimization

problem is

L(θ, π, η, λ) =
N∑

i=1

γ(Nπi)/N − λ′
N∑

i=1

πiq(wi, θ) − η
( N∑

i=1

πi − 1
)
,

where λ ∈ R
M and η ∈ R are the Lagrange multipliers associated with the two constraints. If

the moment function qi(θ) := q(wi, θ) is differentiable on Θ, an interior solution to (2) must set

to zero the partial derivatives of L(θ, π, η, λ). Let Gi(θ) = ∂qi(θ)/∂θ. The partial derivatives

of L(θ, π, η, λ) with respect to θ and π are, respectively,

N∑

i=1

πiGi(θ)
′λ = 0; γ1(Nπi) − λ′qi(θ) − η = 0 (i = 1, . . . , N).

By twice continuous differentiability of γ on Dγ , and strict positivity of γ2 on Dγ , γ1 is

monotone on Dγ . Let Aγ = {y : γ1(x) = y, x ∈ Dγ} be the image of the first derivative of γ
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and

ΛN (θ) =
{
(η, λ′) ∈ R

M+1 : η + λ′qi(θ) ∈ Aγ , for all i 6 N
}
.

For any (η, λ′) ∈ ΛN (θ), we can invert the first order condition γ1(Nπi) − λ′qi(θ) − η = 0 to

obtain that πi = γ̃1(η + λ′qi(θ))/N (i = 1, . . . , N). Replacing this expression for the weights

into the constraints, we have that, for a given θ ∈ Θ, if there exists (η, λ′) ∈ ΛN (θ) solving the

equations

N∑

i=1

γ̃1(η + λ′qi(θ))qi(θ)/N = 0,

N∑

i=1

γ̃1(η + λ′qi(θ))/N = 1,

then the optimal πi’s must take the form πi(θ) = γ̃1(η + λ′qi(θ))/N . When optimizing over

θ ∈ Θ, if qi(θ) is differentiable on Θ, the first order condition for θ must be taken into account.

So, if there exists θ̂ ∈ int(Θ) and (η̂, λ̂′) ∈ ΛN (θ̂) such that

N∑

i=1

γ̃1(η̂ + λ̂′qi(θ̂))/N = 1,
N∑

i=1

γ̃1(η̂ + λ̂′qi(θ̂))qi(θ̂)/N = 0,

N∑

i=1

γ̃1(η̂ + λ̂′qi(θ̂))Gi(θ̂)
′λ̂/N = 0, (3)

then θ̂ and πi(θ̂) = γ̃1(η̂+ λ̂′qi(θ̂))/N (i = 1, . . . , N) solve the MD problem. Note that the set

Aγ determines whether the optimal solution can be attained by Lagrangian techniques. If the

image of the derivative of the divergence is the real line, i.e. Aγ = {y : −∞ < y < +∞}, all

(η, λ′) ∈ R
M+1 are in ΛN (θ̂) and the only requirement is that (θ′, η, λ′) solves (3).

From a statistical point of view, the first order conditions in (3) could be used to estimate θ0

(Imbens, 1997) . Under (1), the system of equations has a unique solution w.p.a.1, (θ′, η, λ′) =

(θ0, 0, 0), and it can be shown that the root of (3) is a consistent and asymptotically normal

distributed estimator of θ0. There are however problems in using (3) directly for estimation.

For instance, the inverse of the first derivative of γ may not have a close form expression for

some γ ∈ Fγ . Even if γ̃1 has a close form expression, q(·, θ) may not be differentiable on

Θ. Also, computing MD estimators as solutions to (2) leaves open the possibility that the

equations in (3) have multiple roots even if (2) has a unique minimum.2

2The multiple roots problem could be addressed by selecting, among all the roots of the first order conditions,
the one that minimizes the MD objective function. That is, if (θ′j , ηj , λ

′
j) (j = 1, . . . , J), solve the first order

conditions, one can form πji = γ̃1(ηj + λ
′

jqi(θj))/N (i = 1, . . . , N) and choose the solution that satisfies

minj∈{1,...,J}

PN

i
γ(Nπji ). It is however difficult to recover all J roots to the estimating equations, especially

when M and/or K are large.
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2.2 Duality

An alternative to working with the first order conditions (3) is working directly with the

extremum problem in (2). However, the constrained optimization problem involves solving

for N +K variables, and it becomes computationally challenging even for small N . We show

here that the MD problem can be re-casted in terms of an attractive saddle point problem in

M +K + 1 variables.

Let Fψ denote the class of convex and twice continuously differentiable functions, ψ : Dψ ⊆
R 7→ R+ with Dψ convex and int(Dψ) = (aψ, bψ), aψ < 0 < bψ; ψ(0) = 0, ψ1(0) = ψ2(0) = 1,

ψ2(x) > 0 for x ∈ Dψ. Consider the following saddle point problem

sup
θ∈Θ

min
(η,λ)∈Λ†

N
(θ)
PN (η, λ, θ), PN (η, λ, θ) =

N∑

i=1

ψ(η + λ′qi(θ))/N − η, ψ ∈ Fψ, (4)

where Λ†
N (θ) =

{
(η, λ′) ∈ R

M+1 : η+λ′qi(θ) ∈ Dψ, for all i 6 N
}
. If q(·, θ) is differentiable on

Θ, a solution θ̂ ∈ int(Θ) and (η̂, λ̂′) ∈ Λ†
N (θ̂) must satisfy the following first order conditions

N∑

i=1

ψ1(η̂ + λ̂′qi(θ̂))/N = 1,
N∑

i=1

ψ1(η̂ + λ̂′qi(θ̂))qi(θ̂)/N = 0,

N∑

i=1

ψ1(η̂ + λ̂′qi(θ̂))Gi(θ̂)
′λ̂/N = 0.

(5)

The first order conditions in (5) differ from (3) in that γ̃1 is substituted with ψ1.

The following theorems make the relationship between the solutions to (2) and the solutions

to (4) explicit. The result is not established in terms of first order conditions. Instead it applies

more generally even when the moment function q(·, θ) is not differentiable. Let q̂i := qi(θ̂),

π̂i := γ̃1(η̂ + λ̂′q̂i)/N , Γ̂N :=
∑N

i=1 γ(Nπ̂i)/N , and P̂N :=
∑N

i=1 ψ(η̂ + λ̂′q̂i)/N − η̂.

Suppose θ̂ ∈ Θ and (η̂, λ̂′) ∈ ΛN (θ̂) solve (4) for some ψ ∈ Fψ. Then θ̂ and π̂i (i = 1, . . . , N)

solve (2) when γ(x) = xψ̃1(x) − ψ(ψ̃1(x)). For this choice of the divergence, it holds that:

γ ∈ Fγ , ψ1(x) = γ̃1(x) for x ∈ Dψ, Dψ = Aγ , and P̂N = −Γ̂N .

Proof. See Appendix A.

The next result establishes the converse of Theorem 2.2: for any divergence γ ∈ Fγ , there

exists a function ψ ∈ Fψ such that if θ̂ ∈ Θ and π̂i = γ̃1(η̂ + λ̂′q̂i)/N (i = 1, . . . , N) solve (2),

then (θ̂′, η̂, λ̂′) solves (4).

Suppose θ̂ ∈ Θ and π̂i = γ̃1(η̂ + λ̂′q̂i)/N (i = 1, . . . N) solve (2) for some γ ∈ Fγ . Then

(θ̂, η̂, λ̂′) solves (4) when ψ(x) = xγ̃1(x)−γ(γ̃1(x)). For this choice of ψ, it holds that: ψ ∈ Fψ,

γ1(x) = ψ̃1(x) for x ∈ Dγ , Aγ = Dψ, and P̂N = −Γ̂N .
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Proof. See Appendix A.

Theorem 2.2 and Theorem 2.2 establish the complete equivalence between the MD problem

in (2) and the saddle point problem in (4): not only any MD estimator can be interpreted as

solving a saddle point problem for a given ψ ∈ Fψ; for any criterion function ψ ∈ Fψ, there

exists an underlying MD problem whose solution is the same as the one to the saddle point

problem.

If q(·, θ) is differentiable on Θ, Theorems 2.2-2.2 imply that solutions to (2) and (4) solve

the same first order conditions, since (3) and (5) are equivalent if ψ1(x) = γ̃1(x) for x ∈ Dψ.

Even for q(·, θ) differentiable, however, Theorems 2.2-2.2 give a more general result than simple

first order conditions equivalence: the objective functions in (2) and (4) are shown to be equal

at (θ̂, π̂1, . . . , π̂N ) and (θ̂′, η̂, λ̂′).

In some cases, for a given divergence there exists a closed form ψ function. For example,

as shown in Table 1, the divergences of EL, ET, CUE and CR imply: ψel(x) = − ln(1 − x),

ψet(x) = expx−1, ψcue(x) = x2/2+x, and ψcr(x;α) =
[
(1+αx)

1+α
α −1

]
/(1+α). In other cases,

though, for a given divergence in Fγ , the implied ψ does not have a closed form expression.

This situation is problematic inasmuch as MD estimators are in practice defined as solutions

to (4). The importance of Theorem 2.2 is that it shows that any MD estimator can be defined

from the “bottom-up” as the solution to (4) for a given ψ ∈ Fψ. The implied divergence may

not have a closed form expression, but this does not present a practical difficulty: what is

needed to give a sound theoretical foundation to the estimation procedure in (4) is only the

existence of an implied divergence, not its closed form expression.

[Table 1 about here.]

When the divergence implied by a given ψ ∈ Fψ is not available in closed form, its fea-

tures can still be studied since the inverse function of ψ(x) can be obtained by numerically

solving ψ1(x) = y for y ∈ Dψ. In a later section, we follow this approach to obtain graphical

representation of divergences implied by certain functions ψ ∈ Fψ with attractive statistical

properties. We then compare them to the divergences of EL and ET.

Theorem 2.2 does not make any uniqueness claim about the solution. Uniqueness of θ̂ as a

solution to (4) is not guaranteed because the function min
(η,λ′)∈Λ†

N
(θ)

∑N
i=1 ψ(η+λ′qi(θ))/N−η

is not necessarily (strictly) concave in θ. Theorem 2.2 only says that every θ that solves (4)

will also solve the corresponding MD problem. However, by the same arguments in Remark

4, the optimal weights will be unique.
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The GEL problem

The GEL estimator of Newey and Smith (2004) solves the following optimization problem:

sup
θ∈Θ

min
τ∈TN (θ)

PN (τ, θ), PN (τ, θ) =

N∑

i=1

ψ(τ ′qi(θ))/N, ψ ∈ Fψ, (6)

where TN = {τ ∈ RM : τ ′qi(θ) ∈ Dψ, for all i 6 N}. NS show that the first order conditions

of the optimization problem in (6) and the first order conditions of the MD problem in (2) agree

for γcr(x;α) and ψcr(x;α).3 We give here sufficient conditions under which the GEL solutions

coincide with the solutions to an MD problem for a generic γ ∈ Fγ . First, we introduce the

concept of generalized homogeneous functions.

Let a, h : A ⊆ R → B ⊆ R. A function f : C ⊆ R → E ⊆ R is generalized homogeneous if

f(κx) = a(κ) + h(κ)f(x) for all x ∈ C and any constant κ ∈ A such that κx ∈ C.

Let q̃i := qi(θ̃), π̃i := ψ1(τ̃
′q̃i)/N , ω̃i := π̃i/

∑N
i=1 π̃i, Γ̃N :=

∑N
i=1 γ(γ̃1(Nπ̃i))/N , Γ̃†

N :=
∑N

i=1 γ(γ̃1(Nω̃i))/N , and P̃N :=
∑N

i=1 ψ(τ̃ ′q̃i)/N .

Suppose (θ̃′, τ̃ ′) solves (6) for some ψ ∈ Fψ. If ψ̃1 is generalized homogeneous, then θ̃ and

ω̃i (i = 1, . . . , N) solve (2) when γ(x) = xψ̃1(x) − ψ(ψ̃1(x)). For this choice of γ it holds:

γ ∈ Fγ , Dψ = Aγ , ψ1(x) = γ̃1(x), x ∈ Dψ, and P̃N = −Γ̃†
N = P̂N .

Proof. See Appendix A

If the inverse function of the first derivative of ψ ∈ Fψ is generalized homogeneous, GEL

estimators and MD estimators coincide for γ given in Theorem 2.2. Therefore, from Theorem

2.2, if θ̃ solves the GEL problem then it must also solve (4), P̃N = −Γ̃†
N = P̂N = −Γ̂N , and

π̂i = ω̃i (i = 1, . . . , N).

When ψ̃1 is not homogeneous, GEL and MD problems are in general solved by different

values of θ. In fact, the GEL problem can be shown to be equivalent to an MD problem that

does not constrain the weights to sum to one:

min
θ∈Θ,p1,...,pN

N∑

i=1

γ(Npi), γ ∈ Fγ

s.t.

N∑

i=1

piqi(θ) = 0, Npi ∈ (aγ , bγ), i = 1, . . . , N. (7)

Let p̃i = ψ1(τ̃
′q̃i)/N .

3The Cressie-Read family of divergences considered by NS is slightly different from the one considered here.
The difference is due to the normalizations that insure that γcr ∈ Fγ .
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Suppose (θ̃′, τ̃ ′) solves (6) for some ψ ∈ Fψ. Then θ̃ and π̃i (i = 1, . . . , N) solve (7) when

γ(x) = xψ̃1(x) − ψ(ψ̃1(x)). For this choice of γ it holds: γ ∈ Fγ , Aγ = Dψ, ψ1(x) = γ̃1(x),

x ∈ Dψ, and P̃N = −∑N
i=1 γ(Np̃i)/N > P̂N .

Proof. See Appendix A

EL, ET, CUE, and in general members of the Cressie Read family posses the generalized

homogeneous property. Generalized homogeneity of ψ̃1 may be difficult to assess in general

and especially when ψ̃1 does not have a closed form expression.4 For this reason in the

remainder of the paper we consider estimators solving (4); the small computational cost (the

inner optimization is with respect to M + 1 instead of M parameters) is outweighed by the

fact that regardless of the homogeneity of the inverse of ψ1, solving (4) is equivalent to solving

(2).

3 Asymptotic

In this section we derive the asymptotic distribution of estimators defined as solutions to (4).

We make the following assumptions.

(A1) (a) θ0 ∈ Θ is the unique solution to E[q(w, θ)] = 0; (b) Θ is compact; (c) q(·, θ) is contin-

uous at each θ ∈ int(Θ), w.p.1; (d) E
[
supθ∈Θ ‖q(w, θ)‖2

]
<∞; (e) Ω = E[qi(θ0)qi(θ0)

′]

is non-singular.

(A2) (a) θ0 ∈ Int (Θ); (b) q(w, θ) is continuously differentiable in a neighborhood N of θ0;

(c) E [supθ∈N ‖Gi(θ)‖] <∞; (d) Rank(G) = K, G = E [Gi(θ0)].

If A1 holds, θ̂
p−→ θ0, η̂ = Op(N

−1), and λ̂ = Op(N
−1/2).

Proof. See Appendix A

The consistency proof uses ideas from Kitamura et al. (2004). Not surprisingly, the La-

grange multiplier η̂ converges to zero faster than
√
N , implying that the first order asymptotic

properties of GEL and MD estimators coincide: the asymptotic distribution of λ̂ and θ̂ is

identical to the asymptotic distribution of the GEL parameters τ̃ and θ̃ (see, NS, Theorem

2.2), even when the generalized homogeneity property does not hold, as the next result makes

clear.

4Since by Theorems 2.2 and 2.2 ψ̃1(x) = γ1(x), ψ̃1 does not have a closed form expression any time the
corresponding divergence does not have a closed form expression.
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If A1 and A2 hold,

√
N

(
λ̂

θ̂ − θ0

)
d−→ N

(
0,

(
P 0

0 Σ

))
,

where Σ = (G′Ω−1G)−1, P = Ω−1(IM −GΣG′Ω−1).

Proof. See Appendix A

The weights π̂i (i = 1, . . . , N) can be used to construct an efficient estimate of the distri-

bution function of w. For any Borel set A, the probability pA := P (w ∈ A) can be estimated

by

p̂A =
∑

i=1

1(x ∈ A)π̂i =
∑

i=1

1(x ∈ A)γ̃1(η̂ + λ̂′q̂i)/N.

The following theorem summarizes the properties of this estimator.

If A1 and A2 hold,

p̂A
p−→ pA,

√
N(p̂A − pA)

d−→ N (0, VA),

where VA = pA(1 − pA) − E[q(w, θ)1(w ∈ A)]′PE[q(w, θ)1(w ∈ A)]. Further, p̂A is efficient in

the sense that VA reaches the semiparametric efficiency bound.

Proof. See Appendix A

Semiparametric efficient estimators for pA that incorporate the information about the mo-

ment restrictions have been proposed and analyzed by Back and Brown (1993) and Brown and Newey

(1998) in the GMM context. Newey and Smith (2004), Ramalho and Smith (2005), and

Brown and Newey (2002) discuss estimation of efficient probability under (1) in the GEL

context using the normalized weights ω̃i = π̃i/
∑N

i=1 π̃i (i = 1, . . . , N).

4 Testing overidentified restrictions

In the GEL framework, test statistics are based either on (i) the GEL objective function (Smith,

1997; Newey and Smith, 2004); (ii) a quadratic form in the Lagrange multipliers (Imbens et al.

(1998)); (iii) implied probabilities (Ramalho and Smith, 2005). The results in Section 2 can

be used to cast the statistics proposed in the literature in a unified framework. Specifically,

all the statistics can be expressed in terms of the divergence of the underlying MD problem.
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The overidentication test statistic based on the GEL criterion function proposed by Newey and Smith

(2004) is given by

GEL(θ̃) = −2
N∑

i=1

ψ(τ̃ ′q̃i).

The corresponding statistic based on the MD saddle point problem is

D(θ̂) = −2
[ N∑

i=1

ψ(η̂ + λ̂′q̂i) −Nη̂
]
.

From Theorem 2.2, if ψ̃1 is a generalized homogeneous function, then

GEL(θ̃) = D(θ̂) = 2

N∑

i=1

γ(Nπ̂i)/N.

If ψ̃1 is not generalized homogeneous, the equality above does not hold and we have instead

D(θ̂) = 2

N∑

i=1

γ(Nπ̂i)/N, GEL(θ̃) = 2

N∑

i=1

γ(Np̃i)/N, GEL(θ̃) 6 D(θ̂).

The inequality GEL(θ̃) 6 D(θ̂) follows from the fact that the GEL optimization is equivalent

to an MD problem in which the weights are not restricted to sum to one: once the restriction

is removed, the minimum attained in (7) must be lower or equal to the minimum attained in

(2).

Imbens et al. (1998) propose statistics for testing (1) based on the Lagrange multipliers of

the EL and the ET problems. In our setup, the corresponding statistics are given by

LMω(θ̃) = Nτ̃ ′Ω̃ω τ̃ , LMπ(θ̂) = N
(
η̂2 + λ̂′Ω̂πλ̂),

where Ω̃ω =
∑N

i=1 ω̃iqi(θ̃)qi(θ̃)
′ and Ω̂π =

∑N
i=1 π̂iqi(θ̂)qi(θ̂)

′ are consistent for Ω.5 The intu-

ition behind these statistics is simple: if the moment conditions are satisfied, (η̂, λ̂′)
p−→ 0 and

τ̃
p−→ 0 and so will the LM statistics. Using our equivalence results, we can cast these statistics

5The Lagrange multipliers can be scaled by any consistent estimator of Ω, for instance by Ω̃ =
PN

i=1
qi(θ̃)qi(θ̃)

′/N or Ω̂ =
PN

i=1
qi(θ̂)qi(θ̂)

′/N without affecting the validity of the asymptotic calibration.
Imbens et al. (1998) also consider scaling the Lagrange multipliers by a robust weighting matrix given by

Ω̂r = Ω̂π

»

PN

i=1
π̂2
i qi(θ̂)qi(θ̂)

′

–−1

Ω̂π.

12



into a more coherent framework. In fact, if ψ̃1 is a generalized homogeneous function, then

LMω(θ̃) = LMπ(θ̂) = 2
N∑

i=1

π̂iγ1(Nπ̂i)
2,

otherwise,

LMπ(θ̂) = 2

N∑

i=1

π̂iγ1(Nπ̂i)
2, LMω(θ̃) = 2

N∑

i=1

ω̃iγ1(Nπ̃i)
2.

The above characterization shows that when Ω̃ω and Ω̂π are used to scale the Lagrange mul-

tipliers, the LM statistics can be thought of as a semiparametric version of score statistics,

where the score is based on the first derivative of the divergence.

When ψ3(0) 6= 2, the Lagrange multiplier η̂ can be used to test the overidentified restrictions

using the following statistic

LMη(θ̂) =
Nη̂

(1 − ψ3(0)/2)
.

For the ET case, we have that η̂ = −∑N
i=1 ψ(λ̂′qi(θ̂))/N . Also, since ψ3(0) = 1, we have that

LMη(θ̂) = −2
∑N

i=1 ψ(λ̂′qi(θ̂)).

If A1-A2 hold,

D(θ̂), GEL(θ̃), LMη(θ̂), LMπ(θ̂), LMω(θ̃)
d−→ χ2

(M−K).

Proof. See Appendix A

The χ2
(M−K) calibration can be easily shown to hold even if (θ̂′, η̂, λ̂′) are replaced by√

N equivalent estimators. It also holds when the divergence defining
∑N

i=1 γ(Nπ̂i)/N is

different from the divergence under which π̂i (i = 1, . . . , N) are optimal. Thus, one can obtain

(θ̇′, η̇, λ̇′) by solving (4) with ψel(x) = − ln(1 − x), but test for overidentified restrictions

using 2
∑N

i=1 γ(Nπ̇i) with the CUE divergence γcue(x) = x2/2 − x + .5 and EL weights,

π̇eli = (1 − η̇ − λ̇′qi(θ̇))
−1/N , that is:

2
N∑

i=1

γcue(Nπ̇eli ) =
N∑

i=1

(
Nπ̇eli

)2 −N.

Through Monte Carlo simulations, Ramalho and Smith (2005) show that this particular test

statistic has competitive size properties.
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5 Higher Order Expansions

In this section we investigate the higher order properties of MD estimators. The analysis is

similar to the one in NS, but it emphasizes different points. NS focus their exploration on the

asymptotic differences between GEL and GMM estimators. We are instead concerned with

the ranking—in terms of higher order efficiency— of estimators in the MD class.

Any higher order asymptotic analysis begins with an expansion of
√
N(θ̂ − θ0). This

expansion usually takes the following form

√
N(θ̂ − θ0) = iN +

bN√
N

+
cN
N

+
rN

N
√
N
. (8)

The terms appearing in (8) are tractable being sums and products of sample averages. As-

sumptions are necessary to guarantee that the remainder of the expansion, the last term in

(8), is bounded in probability up to the required order. In our case, we will require that

rN = Op(N
−3/2).

We can easily derive two properties of estimators that possess an expansion as in (8): the

asymptotic bias of order N−1 and the asymptotic MSE of order N−2. They are obtained by

taking the expectation of the corresponding terms in the expansion (8).

If an estimator
√
N(θ̂ − θ0) admits an asymptotic expansion as in (8), its O(N−1) bias is

given by

E
[
iN
]
+ E

[
bN
]
/N.

Often, E
[
iN
]
= 0 and the asymptotic bias reduces to E

[
bN
]
/N.

If an estimator
√
N(θ̂ − θ0) admits an expansion as in (8), the O(N−1) MSE is given by

E
[
iN i

′
N

]
+ E

[
(bN/

√
N + cN/N)i′N

]
+ E

[
iN (bN/

√
N + cN/N)′

]
.

The asymptotic moments of Definition 2 and 3 are equivalent to those obtained by replacing

the actual distribution of
√
N(θ̂ − θ0) with its o(N−1) Edgeworth approximation, when the

latter exists (see Rothenberg, 1984). Sargan (1974) shows that moments obtained from taking

term-by-term expectations of the stochastic expansion (8) coincide with the moments of the

finite sample distribution, when these moments are finite. As pointed out by Srinivasan (1970),

it is possible that an estimator whose finite sample distribution does not have finite moments

admits an asymptotic expansion. Kunitomo and Matsushita (2003) and Guggenberger (2004)

suggest that EL estimators do not have finite moments in a linear simultaneous equations

setting. These findings seem to question comparisons of MD estimators based on moments of

terms in their asymptotic expansion. However, we interpret the moments based on (8) as the
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moments of an approximating distribution, and, as pointed out by Rothenberg (1984), with

this interpretation it is not unreasonable to compare estimators in terms of higher order bias

and MSE.

We use the following notation. Components of vectors are indexed using superscripts. Thus

θ̂2 denotes the second component of the vector θ̂. Matrix are denoted component-wise adopting

the index notation. So, aij is the element (i, j) of the matrix A. Raised indexes denote inverse

matrix: aij denotes the (i, j) element of A−1. We use the summation convention for matrix

product (see McCullagh, 1987). In any expression, a twice repeated index (occurring twice

as a subscript, twice as a superscript, or once as a subscript and once as a superscript) shall

automatically stand for its sum over the values of the repeated index. We work with three sets

of indexes: (i) a, b, c, d, e, f, g, h ∈ {1, . . . ,M +K+1}, (ii) j, k, ℓ,m, n, o ∈ {2, . . . ,M +1}, (iii)

r, s, t, u, v, w ∈ {M + 2, . . . ,M +K + 1}. Let β = (η, λ′, θ′)′ and define

Qi,1(β) := ψ1(η + λ′qi(θ)) − 1

Qi,2(β) := ψ1(η + λ′qi(θ))qi(θ)

Qi,3(β) := ψ1(η + λ′qi(θ))Gi(θ)
′λ.

The first order conditions of the MD estimator can be conveniently rewritten as

N∑

i=1

Qi(β̂)/N = 0

where Qi(β) = (Qi,1(β), Qi,2(β)′, Qi,3(β)′)′. We define the following moments of the derivatives

of the first order conditions:

µab ≡ E

[
∂Qa(β0)

∂βb

]
, µabc ≡ E

[
∂2Qa(β0)

∂βb∂βc

]
, µabcd ≡ E

[
∂3Qa(β0)

∂βb∂βc∂βd

]
, . . . ,

where β0 = (0, 0, θ′)′. We also let:

Za =
1√
N

N∑

i=1

Qa(β0), Zab =
1√
N

N∑

i=1

∂Qa(β0)

∂βb
−

√
Nµab,

Zabc =
1√
N

N∑

i=1

∂Qa(β0)

∂βb∂βc
−

√
Nµabc, Zabcd =

1√
N

N∑

i=1

∂Qa(β0)

∂βb∂βc∂βd
−

√
Nµabcd,

and so forth.

The estimating equation of MD,
∑

iQi(β̂)/N = 0, is formally equivalent to the score equa-

tion of the MLE. We can then use the results in McCullagh (1987) and expand
∑

iQ(β̂)/N = 0
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around β0 by means of Taylor expansions. Let δ̂a =
√
N(β̂a − βa0 ). Then,

0 =N1/2Za + (N1/2Zab +Nµab)δ̂
b/N1/2 + (N1/2Zabc +Nµabc)δ

bδc/2N

+ (N1/2Zabcd +Nµabcd)δ̂
bδ̂cδ̂d/6N3/2 + op(N

−3/2).

The validity of the previous expansion can be verified under the following assumptions:

(A3) There is b(w) with E[b(wi)
6] < ∞ such that for 0 ≤ j ≤ 4 and all w, ∂jq(w, θ)/∂θj

exists on a neighborhood N of θ0, supθ∈N ‖∂jq(w, θ)/∂θj‖ ≤ b(w), and for each θ ∈ N ,

‖∂4q(w, θ)/∂θ4 − ∂4q(w, θ0)/∂θ
4‖ ≤ b(w)‖θ − θ0‖, and ψ(x) is four times continuously

differentiable with Lipschitz fourth derivative in a neighborhood of zero.

To obtain a Op(N
−3/2) expansion for δ̂a of the type in (8), one proceeds by telescopic

substitution of lower order expansions to obtain

δ̂a = iaN + baN/
√
N + caN/N +Op(N

−3/2), (9)

where, for µa,b,c = µadµbeµcfµdef and µa,b,c,d = µaeµbfµcgµdhµefgh,

iaN = −µajZj
baN = µabµcjZbcZj − µa,j,kZjZk/2

caN = −µabµcdµejZbcZdeZj + µa,j,cµdkZjZcdZk

−µabµcjkZbcZjZk + µa,j,cµk,ℓ,fµcfZjZkZℓ

−µabµjcµkdZbcdZjZk/2 + µa,j,k,ℓZjZkZℓ/6.

The bias of the MD estimator can be easily found. Here we give an expression for the bias in

which the expectations of higher order derivatives of Qi are substituted with expectations of

higher order derivatives of qi.

E(δ̂r) = (1 − ψ3(0)/2)µ
rjµklE

[
qji q

k
i q
ℓ
i

]
/
√
N

+ µrj
{
µskE

[
(∂qji /∂β

s)qki
]
− µstE

[
∂qji /∂β

s∂βt
]
/2
}
/
√
N. (10)

Only the third derivative of ψ evaluated at 0 affects the magnitude of the higher order bias.

When qi has non zero generalized third moments, all MD estimators with ψ3(0) = 2 have the

same N−1 bias. EL has ψ3(0) = 2.

The expression for the higher order MSE of MD estimators could be obtained by substi-

tuting irN , brN and crN into the expression in Definition 3. The resulting expression is however

too complex to be of any help for carrying out higher order comparisons. Calculations can be

greatly simplified if one focuses on the difference between the higher order MSE of two MD
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estimators with the same higher order bias. Let δ̂ψ and δ̂ψ′ denote MD estimators obtained

from ψ ∈ Fψ and ψ′ ∈ Fψ respectively.

If A1-A3 hold and ψ3(0) = ψ′
3(0), then E(δ̂rψ δ̂

s
ψ) − E(δ̂rψ′ δ̂sψ′) = o(N−1).

Proof. See Appendix B

The theorem states that two MD estimators obtained from two divergences such that

ψ3(0) = ψ′
3(0) have the same higher order MSE. This result has an interesting implication.

Adapting an argument of Pfanzagl and Wefelmeyer (1979), NS show that the bias corrected

EL estimator is higher order efficient, having the lowest O(N−2) MSE among all the bias

corrected estimators based on the same moment conditions. Since two MD estimators with

ψ3(0) = 2 have the same O(N−1) bias and the same higher order MSE, it follows that they

also have the same higher order efficiency.

All the MD estimators obtained from an objective function with the property ψ3(0) = 2

are higher order efficient.

This result has a substantive implication: higher order efficiency is an inadequate criterion

for prescribing which MD estimator should be used in practice. If one aims at selecting an

estimator among those have the same bias as the EL, then another criterion must supplement

higher order efficiency. In the next section, we propose to use an estimator’s behavior under

misspecification as an additional criterion.

6 Behavior Under Misspecification

A moment condition model is said to be misspecified if

(MS) ‖
∫
q(w, θ)F (dw)‖ > 0 for all θ ∈ Θ.

There are at least two important reasons why it is relevant to consider the behavior of

estimators when the model is misspecified. First, it is sometimes reasonable to interpret

conditions in (1) as mere approximations of reality. Second, even when the conditions in (1)

are interpreted as the true model, mispecification is a relevant case for hypothesis testing, since

it naturally arises under the alternative hypothesis that the overidentifying restrictions do not

hold.

The MD problem provides a convenient setting for estimating parameters defined by mo-

ment conditions that are misspecified. The population version of the MD problem can be

interpreted as selecting—among all the distributions that satisfy the moment conditions—the

probability measure that is the closest to the true but unknown distribution F . Formally,

inf
G∈G

∫
γ(dG/dF )dF, γ ∈ Fγ
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where

G =
⋃

θ∈Θ

G(θ), G(θ) =

{
G :

∫
q(w, θ)dG = 0,

∫
dG = 1, G≪ F

}
.

If the model is correctly specified, F ∈ G and F = infG∈G

∫
γ(dG/dF )dF . When the model is

misspecified, F /∈ G and F ∗
γ := infG∈G

∫
γ(dG/dF )dF can be interpreted as the pseudo-true

probability measure. Likewise, the value θ∗γ that corresponds to F ∗
γ can be regarded as the

pseudo-true parameter for the misspecified model. We index the solutions by γ to stress the

fact that under misspecification the pseudo-true probability and parameter depend on the

particular divergence that defines the MD problem.

Under misspecification, not only the solutions to the population problem depend on γ: also

the behavior of the MD estimators does. Under MS, the equivalence of the MD problem (2)

and the saddle point problem (4) may fail to hold for some γ ∈ Fγ , rendering estimation of θ∗γ

and F ∗
γ unfeasible.

The equivalence, in terms of solutions, between the MD problem and the saddle point

problem is based entirely on Lagrangian type arguments: the equivalence holds if the optimal

solutions to (2) can be expressed as a particular function of M +K + 1 parameters. As seen

in Section 2, Lagrangian type arguments can be used if there exist (η̂, λ̂′) ∈ R
M+1 and θ̂ ∈ Θ

such that

η̂ + λ̂′qi(θ̂) ∈ Aγ , for all i 6 N, (11)

the constraints are satisfied for π̂i = γ̃1(η̂+λ̂
′qi(θ̂))/N , and

∑N
i=1 γ(Nπ̂i)/N 6

∑N
i=1 γ(Nπ̄i)/N

for all feasible π̄i (i = 1, . . . , N). Condition (11) is not binding for MD problems when

Aγ = (−∞,+∞). When Aγ does not span all R, however, the MD solution may not be

characterized by Lagrangian arguments.

If the model is correctly specified, asN → ∞, condition (11) will be satisfied w.p.a.1. Under

misspecification, (11) may instead fail to hold even when N → ∞. For instance, consider the

EL estimator. Its divergence (γel(x) = − lnx + x − 1) implies that Aγ = (−∞,+1). Since

the Lagrange multiplier η can be eliminated in this case (see Theorem 2.2), condition (11)

becomes

max
i≤N

τ ′qi(θ) < 1. (12)

We show now that under misspecification there does not exist a
√
N−consistent Lagrange

multiplier that solves the EL problem. Let θ̇ and τ̇ denote the solution to the EL problem

and the associated Lagrange multiplier, respectively. Suppose that q(w, θ) is unbounded in
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every direction, i.e. supw∈W υ′q(w, θ) = +∞ for all ‖υ‖ = 1 and all θ ∈ Θ. As shown in the

proof of Lemma 3, Assumption A1 implies that bN := maxi6N supθ∈Θ ‖qi(θ)‖ = op(N
1/2). If

the Lagrange multiplier is N−1/2 bounded in probability, we can write, τ̇ = ρξ + Op(N
−1/2),

where ρ = ‖τ0‖ and ξ ∈ R
M , ‖ξ‖ = 1. But then, uniformly on (i = 1, . . . , N),

τ̇ ′qi(θ̇) 6 (ρ+Op(N
−1/2))‖qi(θ̇)‖ 6 (ρ+Op(N

−1/2))bN = ρop(N
1/2) + op(1).

To satisfy (12), ρ must be 0 which gives that τ̇ ′qi(θ̇) = op(1) uniformly on (i = 1, . . . , N). This

implies that γ̃1(τ̇
′qi(θ̇))/N = N−1 + op(1), uniformly as well; but under MS, πi = N−1 + op(1)

(i = 1, . . . , N) and θ̇ are not asymptotic solutions to the MD problem.

In an interesting paper, Schennach (2007) shows that calculating the EL estimator by

solving

arg max
θ∈Θ

min
τ∈Λ†(θ)

N∑

i=1

ln(1 − τ ′qi(θ))/N,

is not a
√
N convergent procedure for the pseudo true value under MS.

As should be clear from the previous discussion, there is a simple way to avoid the pitfalls of

MD procedures under MS, that is, choosing divergences with Aγ = (−∞,+∞). ET, CUE and

all members of the CR family with parameter α equal to an odd integer have Aγ = (−∞,+∞).

Unfortunately, when the moment conditions are correctly specified, these estimators are not

higher order efficient. We identify MD estimators whose underlying Aγ is the real line and

that are higher order efficient. We proceed by first deriving functions ψ ∈ Fψ with full

domain, Dψ = R and such that ψ3(0) = 2. We then use Theorem 2.2 to derive the underlying

divergences.

We start by considering a modification of ψet, that is,

ψ(x) = exph(x) − xC1 − C2,

C1 =
h1(0)

h1(0) + h2(0)
, C1 =

1

h1(0) + h2(0)

where h : R 7→ R is four times continuously differentiable. Since dom(h) = R, then, by

construction, Dψ = (−∞,+∞). With the normalization exph(c)− xC1 −C2 belongs to Fψ if

h2(x) > h1(x)
2, x ∈ R. It is easy to verify that if h3(0) = 1, the estimator based on exph(x)

will be higher order efficient. We define the following estimators.
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[Quartic Tilting]The Quartic Tilting (QT) estimator solves (4) with

ψqt(x; ν) =




e[(1+x)

4−4x−1]/12 + x− 1 x > ν

c1e
c2x x 6 ν

where ν < 0, c1 = h1(ν)/(h1(ν)
2/h2(ν)−h(ν)+h(ν)), c2 = ec1ν/(h(ν)+h1(ν)

2/h2(ν)−h(ν)).
[Hyperbolic Tilting]The Hyperbolic Tilting (HT) estimator solves (4) with ψht(x) = exp sinhx−

1.

It is easy to verify that ψqt3 (0) = ψht3 (0) = 2. The underlying divergences however cannot be

given explicitly because neither the inverse function of ψqt nor the one of ψht have a closed form

expression. Nevertheless, as pointed out in Remark 6, the characterization of the divergence

in Theorem 2.2 allows us to obtain at least a graphical representation by numerically inverting

ψqt1 and ψht1 and calculating γ(x) = xψ̃1(x) − ψ(ψ̃1(x)), for all x in the image of ψqt1 and ψht1 .

The resulting divergences are plotted in Figure 1, which, for reference, also plots γel and γet.

[Figure 1 about here.]

An alternative approach consists in modifying the ψel. As in Owen (2001), we define, for

ε ∈ (0, 1),

ψel(x; ε) =




− log(1 − x) if x ∈ (−∞, ε)

− log(1 − ε) + x−ε
1−ε + (x−ε)2

2(1−ε)2 if x ∈ [ε,+∞)
.

Owen (2001) points out that as ε → 1 the function ψel(x; ε) converges to ψel(x); he suggests

using εN = 1 − o(N−1). Under MS, setting ε = 1 − o(N−1) as N → ∞ will limit the span

of Aγ and make the estimator based on ψel(x, εN ) susceptible to the same misspecification

issues as EL. However, setting ε to a constant, say ε̄ ∈ (0, 1), does not affect the higher

order asymptotic efficiency of ψel(x; ε) and it does not restrict the span of Aγ . The divergence

underlying ψel(x, ε̄) can be easily recovered using Theorem 2.2. Notice that its first derivatives

is

ψel1 (x; ε̄) =





1
1−x if x ∈ (−∞, ε̄)

x−ε̄
(1−ε̄)2 − 1

1−ε̄ if x ∈ [ε̄,+∞)
,

and the inverse of it is

ψ̃el1 (x; ε̄) =





1 − 1/x if x ∈
(
0, 1

1−ε̄

)

(x− 1)(1 − 2ε̄) + ε̄2x if x ∈
[

1
1−ε̄ ,+∞

) .
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Applying the transformation γel(x; ε̄) = xψ̃el1 (x; ε̄) − ψel(ψ̃el1 (x; ε̄); ε̄), we obtain

γel(x; ε̄) =




− log(x) + x− 1 if x ∈

(
0, 1

1−ε

]

log(1 − ε̄) + 0.5 + (2ε̄− 1)x+ 0.5(ε̄ − 1)2x2 if x ∈
[

1
1−ε ,+∞

) .

[Figure 2 about here.]

The divergence γel(x, ε̄) is plotted in Figure 2 together with γel(x) and γet(x). Although the

differences between γel(x) and γel(x; ε̄) are small, the behavior of the underlying estimators

is—under misspecification—very different, as shown in the simple numerical example below.

The function ψel(x; ε), ε = 1− o(N−1), is proposed by Owen as a computational device to

avoid explicitly constraining the Lagrange multipliers of EL to belong to Λ(θ). Under correct

specification, one could let ε = 1 − o(N−δ), δ > 0, without affecting the asymptotic behavior

of the resulting estimator.

Under MS, estimators based on γel(x, ε̄) and γqt(x; ν) will converge to a pseudo-true value

that depends on the specific value of ε̄ and ν used. Under correct specification, only the

behavior of the divergence in a neighborhood of 1 is important and, hence, the resulting

estimator is asymptotically unaffected by the particular choice ε̄ and ν.

Notice that ψht(x), ψqt(x; ν) and ψel(x; ε̄) do not satisfy the generalized homogeneity

conditions of Theorem 2.2 and, thus, the estimators obtained from solving the GEL problem

with these functions do not correspond to minimum divergence estimators.

Numerical Example

To verify that QT, HT and the estimator based on the modified EL divergence behave well

under misspecification we run a small scale Monte Carlo experiment, considering the same

design of Schennach (2007). The moment condition model is given by

E
[
q(w, θ0)

]
= 0, q(wi, θ) =

[
wi − θ

(wi − θ)2 − 1

]
. (13)

In each Monte Carlo replication, w is drawn from w ∼ N(0, 0.64). Under this distribution, the

moment condition is misspecified. In each replications, we solve the saddle point problem in (4)

with ψel(x, ε̄), ψel(x; εN ), ψht(x), and ψqt(x; ν), with ε̄ = 0.99, εN = 1 −N−1, and ν = −1.5.

We consider three sample sizes, N = {1000, 2500, 5000} and we run 1000 replications for each

sample size.

Figure 3 plots the sampling distributions of the four estimators considered. Each panel plots

the sampling distribution of each estimator for the three sample sizes considered. The sampling

distribution of θ̂elεN (upper left panel) shows clear signs of non-normality; departures from
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normality are exacerbated as the sample size increases. The (empirical) sampling distributions

of θ̂elε̄ , θ̂qtν and θ̂ht are in line with the sampling distribution of a
√
N consistent estimator and

no departures from normality can be detected.

[Figure 3 about here.]

7 Conclusion

This paper studies the Minimum Divergence class of estimators for econometric models speci-

fied through moment conditions. We extend the analysis of Newey and Smith (2004) and show

that MD estimators defined in terms of strictly convex divergences can always be calculated as

solutions to a computationally tractable optimization problem. The problem is similar to the

optimization setting that defines the GEL estimators of Newey and Smith and it is identical

when a condition on the inverse function of the first derivative is satisfied. The MD framework

allows a coherent presentation and unification of a series of tests that have been presented as

alternative to the overidentified test statistics of Hansen (1982). MD estimators that have the

same higher order bias of EL share the same higher order MSE. Since EL is higher order effi-

cient, this result implies that there are many higher order efficient MD estimators. Schennach

(2007) shows that the asymptotic distribution of the EL may not be normal if the moment

condition is misspecified. We give examples of estimators that are third order efficient under

correct specification and do not misbehave when the moment condition does not hold exactly.

There are many important aspects of MD estimators that still remain to be explored. Es-

timators who have small bias and are higher order efficient are often preferable. However,

concerns for real applications include the small sample properties of test procedures (in terms

of size and power) and of confidence intervals (in terms of coverage). The only work that deals

with optimality of overidentified test statistics is Kitamura (2001), where it is demonstrated

that tests based on the EL objective function are uniformly most powerful in the Hoeffding

sense. Unfortunately, the empirical size of overidentified tests based on EL is, in simulations,

often found to be far from the nominal level. Further, different divergences give rise to test

statistics that perform very differently in terms of size. What is the combination estima-

tor/test that performs better (and in which statistical environment) is still an open question.

Chen and Cui (2007) have shown that EL is Bartlett correctable under the setting consider

in this paper. It would be interesting to extend their analysis and derive conditions on the

class of divergences under which Bartlett correctability can be proved. Finally, we note that

in Monte Carlo simulations not reported here tests of overidentified restrictions based on the

divergences proposed in Section 6 tend to perform extremely well in terms of size. We leave

exploration of this aspect for future work.
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A Mathematical Appendix

Suppose ψ ∈ Fγ . Then the function γ(x) = xψ̃1(x) − ψ(ψ̃1(x)) belongs to Fγ , its domain is

Dγ = (l, u), l = limuցaψ ψ1(u) and u = limuրbψ ψ1(u), and Λ†
N (θ) = ΛN (θ), T †

N (θ) = ΛN (θ)

and T †
N (θ) = TN (θ) for θ ∈ Θ.

Proof. Strict convexity of ψ on Dψ implies that the inverse function of ψ1(x) is well defined for

every x ∈ Dψ, ψ̃1 : S → (aψ, bψ), S = (aψ′ , bψ′), aψ′ = limuցaψ ψ1(u) and bψ′ = limuրbψ ψ1(u).

The function γ(x) = xψ̃1(x) − ψ(ψ̃1(x)) is defined on S, and, by twice continuous differentia-

bility of ψ on Dψ, it is twice continuously differentiable on S with

γ1(x) = ψ̃1(x) + x
dψ̃1(x)

dx
− ψ1(ψ̃1(x))

dψ̃1(x)

dx
= ψ̃1(x).

The inverse function ψ̃1(x) is strictly increasing on S. Therefore, γ1(x) is strictly increasing

on S and γ(x) is strictly convex on S. The normalizations ψ1(0) = 1 and ψ(0) = 0 imply

that ψ̃1(1) = 0 and γ1(1) = ψ̃1(1) − ψ(ψ̃1(1)) = 0. This and strictly convexity imply that γ

attains its minimum 0 at x = 1, thus γ(x) ≥ 0 for x ∈ S . Since ψ2(x) > 0 on x ∈ Dψ the

inverse function theorem gives that γ2(x) = 1/ψ2(ψ̃1(x)); since ψ2(0) = 1, and ψ̃1(1) = 0 it

follows that γ2(1) = 1. The last assertion follows from noting that {y : γ1(x) = y, x ∈ S} =

domψ1. Q.E.D.

Suppose γ ∈ Fγ . Then the function ψ(x) = xγ̃1(x) − γ(γ̃1(x)) belongs to Fψ, its domain

is Dψ = (l, u), l = limuցaγ γ1(u) and u = limuրbγ γ1(u), and Λ†
N (θ) = ΛN (θ), T †

N (θ) = ΛN (θ)

and T †
N (θ) = TN (θ) for θ ∈ Θ.

Proof. Strict convexity of γ on Dγ implies that the inverse function of γ1(x) is defined for

x ∈ Dγ , γ̃1 : S → (aγ , bγ), S = (aγ′ , bγ′), aγ′ = limuցaγ γ1(u) and bγ′ = limuրbγ γ1(u). The

function ψ(x) = xγ̃1(x) − γ(γ̃1(x)) is defined on S, and, by twice continuous differentiability

of γ on (aγ , bγ), it is twice continuously differentiable on S with

ψ1(x) = γ̃1(x) + x
dγ̃1(x)

dx
− γ1(γ̃1(x))

dγ̃1(x)

dx
= γ̃1(x).

The inverse function γ̃1(x) is strictly increasing on S. Therefore, ψ1(x) is strictly increasing

on S and ψ(x) is strictly convex on S. The normalizations γ1(1) = 0 and γ(1) = 0 imply that

γ̃1(0) = 1 and ψ1(0) = γ̃1(0)−γ(γ̃1(0)) = 1. This and strictly convexity imply that ψ it attains

its minimum 0 at x = 0, thus γ(x) ≥ 0 for x ∈ S . Since γ2(x) > 0 on x ∈ Dγ the inverse

function theorem gives that ψ2(x) = 1/γ2(γ̃1(x)); since γ2(1) = 1, and γ̃1(0) = 1 it follows

that ψ2(0) = 1. The last assertion follows from noting that {y : γ1(x) = y, x ∈ S} = domψ1.

Q.E.D.
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Proof of Theorem 2.2

Apply Lemma A to obtain that, for γ(x) = xψ̃1(x) − ψ(ψ̃1(x)), γ ∈ Fγ , ψ1(x) = γ̃1(x),

x ∈ Dψ, ΛN (θ) = Λ†
N (θ) for θ ∈ Θ. We need to show that Γ̂N 6

∑N
i=1 γ(Npi)/N for all

feasible pi, i = 1, . . . , N . First notice that γ(Nπ̂i) = Nπ̂iψ̃1(Nπ̂i)−ψ(ψ̃1(Nπ̂i)); summing over

(i = 1, . . . , N), using ψ1(x) = γ̃1(x),
∑N

i=1 ψ1(η̂+ λ̂′q̂i)/N = 1, and
∑N

i=1 ψ1(η̂+ λ̂′q̂i)q̂i/N = 0

give

Γ̂N = −P̂N . (A.1)

Let (η̄, λ̄′)′ = arg min
(η,λ′)′∈Λ†

N
(θ̄)
PN (η, λ, θ̄) and π̄i = ψ1(η̄ + λ̄′qi(θ̄))/N , (i = 1, . . . , N). Op-

timality of η̂, λ̂ and θ̂ implies that P̂N > PN (η̄, λ̄, θ̄) for all θ̄ ∈ Θ. We have that γ(Nπ̄i) =

Nπ̄iψ̃1(Nπ̄i) − ψ(ψ̃1(Nπ̄i)). Summing over (i = 1, . . . , N) and noting that
∑N

i=1 ψ1(η̄ +

λ̄′qi(θ̄))/N = 1, and
∑N

i=1 ψ1(η̄ + λ̄′qi(θ̄))q̂i/N = 0 imply that
∑N

i=1 γ(Nπ̄i)/N = PN (η̄ +

λ̄′qi(θ̄)) which, in turns, implies

−P̂N = Γ̂N 6

N∑

i=1

γ(Nπ̄i)/N = −PN (η̄ + λ̄′qi(θ̄)). (A.2)

This last result establishes that π̂i, (i = 1, . . . , N), solve the MD problem for all the feasible

weights of type γ̃1(η + λ′qi(θ))/N , which are optimal for θ ∈ Θ.

Proof of Theorem 2.2

Apply Lemma A to obtain that, for ψ(x) = xγ̃1(x)−γ(γ̃1(x)), γ ∈ Fγ , ψ1(x) = γ̃1(x), x ∈ Dψ,

ΛN (θ) = Λ†
N (θ) for θ ∈ Θ. For every s ∈ Dψ and every t ∈ Dγ , the Fenchel inequality (see

Rockafellar, 1970, pag. 218) yields

sγ̃1(s) − γ(γ̃1(s)) ≥ st− γ(t).

Let p̂i, (i = 1, . . . , N), be feasible at θ = θ̂, that is Np̂i ∈ (aγ , bγ),
∑N

i=1 p̂i = 1,
∑N

i=1 p̂iq̂i = 0.

Evaluating the Fenchel inequality at t = Np̂i and s = η̂ + λ̂′q̂i, summing over (i = 1, . . . , N),

and using γ̃1(x) = ψ1(x) for all x ∈ (aψ, bψ),
∑N

i=1 ψ1(η̂ + λ̂′q̂i)/N = 1, and
∑N

i=1 ψ1(η̂ +

λ̂′q̂i)q̂i/N = 0 give

P̂N = −Γ̂N > −
N∑

i=1

γ(Np̂i)/N. (A.3)
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We need to prove that θ̂ is optimal. Let (η̄, λ̄′)′ = arg min(η,λ′)′∈ΛN (θ̄) PN (η, λ, θ̄) for θ̄ ∈ Θ.

We then have that

PN (η̄, λ̄, θ̄) = −
N∑

i=1

γ(Nγ̃1(η̄ + λ̄′qi(θ̄)))/N.

But
∑N

i=1 γ(Nγ̃1(η̄ + λ̄′qi(θ̄)))/N > Γ̂N and, thus, P̂N > PN (η̄, λ̄, θ̄), as required.

Q.E.D.

Proof of Theorem 2.2

Apply Lemma A to obtain that, for γ(x) = xψ̃1(x)−ψ(ψ̃1(x)), γ ∈ Fγ , ψ1(x) = γ̃1(x), x ∈ Dψ,

ΛN (θ) = Λ†
N (θ) for θ ∈ Θ. Let pi, (i = 1, . . . , N), feasible for θ̃ ∈ Θ:

Npi ∈ (aγ , bγ),

N∑

i=1

piq̃i = 0.

Evaluating the Fenchel inequality at s = τ̃ ′q̃i and t = Npi yields

ψ(τ̃ ′q̃i) = τ̃ ′q̃iγ̃1(τ̃
′q̃i) − γ(γ̃1(τ̃

′q̃i)) > τ̃ ′q̃ipi − γ(Npi).

Summing over (i = 1, . . . , N), using γ̃1(x) = ψ1(x), and
∑N

i=1 ψ1(η̂ + λ̂′q̂i)q̂i/N = 0 give

P̃N = −Γ̃N > −
N∑

i=1

γ(Npi)/N

The last inequality implies that Γ̃N 6
∑N

i=1 γ(Npi)/N and, thus, π̃i is optimal among all the

weights that do not impose
∑N

i=1 pi = 1 and, hence, not necessarily feasible for 2. For any

feasible weights, say ςi (i = 1, . . . , N),
∑N

i=1 ςi = 1,
∑N

i=1 ςiq̃i = 0, it must hold

ΓN (η̃, λ̃, θ̃) = − min
(η,λ′)∈Λ†

N
(θ̃)
PN (η, θ, θ̃) 6

N∑

i=1

γ(Nςi)/N.

By convexity of γ(x), γ(x) > γ(y) + γ1(y)(x− y) for all x, y ∈ (aγ , bγ). Hence,

ΓN (η̃, λ̃, θ̃) > Γ̃†
N +

N∑

i=1

γ1(Nω̃)(π̃i − ω̃i).
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Let δ = N/
∑N

i=1 π̃i. We have that γ1(Nω̃i) = a(δ) +h(δ)γ1(Nπ̃i). By feasibility of π̃i and ω̃i,

it follows that
∑N

i=1(π̃i − ω̃i) = 0 and
∑N

i=1 q̃i(π̂i − ω̃i) = 0. Thus,

N∑

i=1

γ1(Nω̃)(π̃i − ω̃i) = a(δ)
N∑

i=1

(π̃i − ω̃i) + h(δ)
N∑

i=1

γ1(γ̃1(τ̃
′q̃i))(π̃i − ω̃i)

= h(δ)τ̃ ′
N∑

i=1

q̃i(π̃i − ω̃i) = 0,

Therefore, Γ̃†
N 6 ΓN (η̃, λ̃, θ̃) 6

∑N
i=1 γ(Nςi)/N . But since ΓN (η̃, λ̃, θ̃) is optimal at θ = θ̃ it

must be that Γ̃†
N = ΓN (η̃, λ̃, θ̃). To show that θ̃ is optimal for the MD problem note that, for

PN (τ∗, θ) = min
τ∈T †

N
(θ)
PN (τ, θ), π∗i = γ1(τ

∗′qi(θ))/N , ω∗′
i = π∗i /

∑N
i=1 π

∗
i , we have

−Γ̃N = −Γ̃†
N = P̃N > PN (τ∗, θ) = −

N∑

i=1

γ(Nπ∗i )/N = −
N∑

i=1

γ(Nω∗
i )/N,

from which the result follows. Q.E.D.

Proof of Theorem 2.2

Lemma A gives the three first three conclusions. Let ςi, (i = 1, . . . , N), feasible for θ = θ̃:

Nςi ∈ (aγ , bγ),

N∑

i=1

ςiq̃i = 0.

For s = τ̃ ′q̃i and t = Nςi, the Fenchel inequality gives

ψ(τ̃ ′q̃i) = τ̃ ′q̃iγ̃1(τ̃
′q̃i) − γ(γ̃1(τ̃

′q̃i)) > τ̃ ′q̃iςi − γ(Nςi).

By summing over (i = 1, . . . , N), using feasibility of ςi, ψ1(x) = γ̃1(x) we obtain

N∑

i=1

γ(Np̃i)/N 6

N∑

i=1

γ(Nςi)/N

The proof is completed by showing, as in the proof of Theorem 2.2 and Theorem 2.2 that θ̃ is

optimal. Q.E.D.

Suppose Assumption A1 holds. Let

ΛsN =
{
(η, λ′) : |η| 6 N−1+ξ, ‖λ‖ < N−1/2+ζ , (ξ, ζ) > 0

}
.
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Then supθ∈Θ,(η,λ′)∈Λs
N
,i6N |η + λ′qi(θ)| = op(1).

Proof. Apply Lemma 3 in Owen (1990) to deduce that

bN := sup
i≤N,θ∈Θ

‖qi(θ)‖ = o(N1/2)

w.p.1 and that there exists a δ > 0 such that bN = O(N1/2−δ) w.p.1. Then

sup
i6N,θ∈Θ,(η,λ′)∈Λs

N
,
|η + λ′qi(θ)| 6 N−ξ + ‖λ‖bN = N−ξ +N−1/2+ζO(N1/2−δ) = O(N ζ−δ),

with probability one. Since ζ is arbitrary, the result follows for ζ < δ.

Q.E.D.

If Assumption A1 holds, (η(θ0), λ(θ0)
′) := arg min(η,λ′)∈ΛN (θ0) PN (η, λ, θ0) exists w.p.a.1,

η(θ0) = Op(N
−1), λ(θ0) = Op(N

−1/2), and PN (η(θ0), λ(θ0), θ0) = Op(N
−1).

Proof. Let ΛsN be as defined as in Lemma A, (η̃, λ̃′) := arg min(η,λ′)∈Λs
N
PN (η, λ, θ), υ̃i =

tη̃ + tλ̃′qi(θ0), some t ∈ [0, 1]. By Lemma A1 and continuous differentiability of ψ we have

that maxi6N ψ2(υ̃i) = 1 for all t ∈ [0, 1] w.p.a.1. Positive definitiveness of Ω and a Taylor

expansion imply that

0 6 PN (0, λ̃, θ0) = λ̃′qn(θ0) + λ̃′
( N∑

i=1

ψ2(υ̃i)qi(θ0)qi(θ0)
′/N

)
λ̃

6 ‖λ̃‖‖qn(θ0)‖ − C‖λ̃‖2, w.p.a.1,

where C is a strictly positive constant. The inequality C‖λ̃‖2 6 ‖λ̃‖‖qn(θ0)‖ and the CLT

yield λ̃ = Op(N
−1/2) = op(N

−1/2+ζ). By optimality of (η̃, λ̃′), 0 = PN (0, 0, θ0) 6 PN (η̃, λ̃, θ0).

Notice that PN (η̃, λ̃, θ0) >
∑N

i=1 λ̃
′qi(θ0)/N , since it holds that ψ(x) > ψ(y) + ψ1(y)(x − y)

for all (x, y) ∈ Dψ. Therefore, a Taylor expansion gives the following

0 6 −λ̃′
( N∑

i=1

ψ2(υ̃i)qi(θ0)qi(θ0)
′/N

)
λ̃− η̃2

N∑

i=1

ψ2(υ̃i)/N − η̃λ̃

N∑

i=1

ψ2(υ̃i)qi(θ0)/N

6 −η̃2 − η̃λ̃′qn(θ0) 6 −η̃2 − |η̃|‖λ̃‖‖qn(θ0)‖ 6 −η̃2 + |η̃|‖λ̃‖‖qn(θ0)‖, w.p.a.1.

This implies that η̃ = Op(N
−1) = op(N

−1+ξ) for all ξ < 1. It follows that (η̃, λ̃′) ∈ Int(ΛsN )

w.p.a.1 and by convexity of ΛN (θ0) we have that w.p.a.1

(η(θ0), λ(θ0)
′) = arg min

(η,λ′)∈ΛN (θ0)
PN (η, λ, θ0) = (η̃, λ̃′) = arg min

(η,λ′)∈Λs
N

PN (η, λ, θ0),

yielding the first and second assertions of the theorem. The third assertion follows by ex-

panding PN (η(θ0), λ(θ0), θ0) around (η(θ0), λ(θ0)
′) = (0, 0′) to obtain PN (η(θ0), λ(θ0), θ0) =
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λ(θ0)
′qn(θ0) +Op(N

−1) = Op(N
−1).

Q.E.D.

Proof of Theorem 3

The proof is based on the ideas of Wald (1949) and Wolfowitz (1949). The basic argument goes

as follows. Let B(δ, θ0) denote a ball of radius δ > 0 around θ0. Inside Θ\B(δ, θ0), the sample

objective function is bounded away from the maximum of the population objective function

evaluated at the true parameter value, w.p.a.1. The maximum of the sample objective function

is by definition not smaller than its value at the true parameter value. The latter converges—by

LLN—to the population objective function evaluated at θ0. Hence, the maximum of the sample

objective function is unlikely to occur in Θ\B(δ, θ0) for large enough N . This is tantamount

to consistency of maximum of the sample objective function.

Let

CN =
{
w : sup

θ∈Θ
‖q(w, θ)‖ 6 N1/2υ and sup

θ∈Θ
−‖q(w, θ)‖ ≥ N1/2ℓ

}
,

for some ℓ < aψ < υ < bψ. Let u(θ) = qi(θ)/(1 + ‖qi(θ)‖). By optimality of η(θ) and λ(θ), we

have that

PN (η(θ), λ(θ), θ) 6

N∑

i=1

ψ(−N−1/2u(θ)′qi(θ)1(wi ∈ CN ))/N := QN (θ).

For some t ∈ [0, 1], the mean value theorem implies

N1/2QN (θ) =
N∑

i=1

−u(θ)′qi(θ)/N +
N∑

i=1

Ri(θ, t)/N, (A.4)

where

Ri(θ, t) = u(θ)′qi(θ)(1 − I(wi ∈ CN ))

+N−1/2ψ2(−N−1/2tu(θ)′qi(θ) I (wi ∈ CN ))u(θ)′qi(θ)qi(θ)
′u(θ) I (wi ∈ CN ).

Repeated application of the Cauchy-Schwartz inequality, convexity of ψ, supθ∈Θ‖u(θ)‖ 6 1,

supθ∈Θ‖u(θ)‖2 6 1 yields

|Ri(θ, t)| 6 sup
θ∈Θ

‖qi(θ)‖(1 − max
i6N

I(wi ∈ CN )) +N−1/2ψ2(m) sup
θ∈Θ

‖qi(θ)‖2 max
i6N

I(wi ∈ CN )
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for some m ∈ (aψ, bψ). Now, since 1 − maxi6N I(wi ∈ CN ) = op(1), by Assumption A1 the

remainder term in (A.4) is uniformly Op(N
−1/2) and, therefore,

N1/2QN (θ) = −
N∑

i=1

u(θ)′qi(θ)/N + op(1), uniformly in Θ. (A.5)

Therefore,

sup
θ∈Θ

N1/2PN 6 sup
θ∈Θ

N1/2QN (θ) = sup
θ∈Θ

N1/2
N∑

i=1

−u(θ)′qi(θ)/N + op(1).

Compactness of Θ, continuity u(θ)′qi(θ) at each θ ∈ Θ w.p.1, |N1/2u(θ)′qi(θ)| 6 N1/2 supθ∈Θ‖qi(θ)‖,
and E

[
supθ∈Θ‖qi(θ)‖

]
<∞ imply

sup
θ∈Θ

∥∥∥∥−
N∑

i=1

u(θ)′qi(θ)/N − E
[
−u(θ)′qi(θ)

]∥∥∥∥ = op(1). (A.6)

Since −E[u(θ)′qi(θ)] = −E
[
qi(θ)/(1 + ‖qi(θ)‖

]
< 0, continuity of E

[
−u(θ)′qi(θ)

]
implies that

there exists for every δ > 0 a number h(δ) > 0 such that supθ∈Θ\B(θ,δ0)E[−u(θ)′qi(θ)] 6 −h(δ)
and

sup
θ∈Θ\B(θ0,δ)

N1/2PN (η(θ), λ(θ), θ) 6 sup
θ∈Θ\B(θ0,δ)

E[−u(θ)′qi(θ)] 6 −h(δ),

which together with (A.5) and (A.6) yield

P

{
sup

θ∈Θ\B(θ0,δ)
PN (η(θ), λ(θ), θ) > −N−1/2h(δ)

}
< δ/2. (A.7)

From convexity of ψ(x) and optimality of the Lagrange Multipliers, we have that

PN (η(θ0), λ(θ0), θ0) > η(θ0) +

N∑

i=1

λ(θ0)
′qi(θ0)/N.

Apply Lemma A to deduce that λ(θ0) = Op(N
−1/2). Therefore, by convexity of ψ(x),

PN (η(θ0), λ(θ0), θ0) >

N∑

i=1

λ(θ0)
′qi(θ0)/N = Op(N

−1/2)Op(N
−1/2) = op(N

−1/2).
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If θ̂ ∈ Θ\B(θ0, δ), then

sup
θ∈Θ\B(θ0,δ)

N1/2PN (η(θ), λ(θ), θ) = N1/2PN (η(θ̂), λ(θ̂), θ̂) > N1/2PN (η(θ0), λ(θ0), θ0) = op(1).

Therefore, eventually,

P

{
PN (η(θ0), λ(θ0), θ0) < −N−1/2h(δ)

}
< δ/2. (A.8)

Noting that

{
θ̂ ∈ Θ\B(θ0, δ)

}
⊂
{

sup
Θ\B(θ0,δ)

PN (η(θ), λ(θ), θ) > PN (η(θ0), λ(θ0), θ0)

}

⊂
{

sup
Θ\B(θ0,δ)

PN (η(θ), λ(θ), θ) > −N−1/2h(δ)

}

∪
{
PN (η(θ0), λ(θ0), θ0) < −N−1/2h(δ)

}
,

we have that for all δ > 0, there exists a Nδ such that for all N > Nδ such that

P
{
θ̂ ∈ Θ\B(θ0, δ)

}
6 δ,

giving consistency of θ̂. Q.E.D.

Proof of Theorem 3

From Theorem 3 and Lemma 3 the first order conditions

N∑

i=1

ψ1(η̂ + λ̂′qi(θ̂))/N = 1,

N∑

i=1

ψ1(η̂ + λ̂′qi(θ̂))qi(θ̂)/N = 0,

N∑

i=1

ψ1(η̂ + λ̂′qi(θ̂))Gi(θ̂)
′λ̂/N = 0.
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are satisfied w.p.a.1. A mean value expansion of the first order conditions around θ = θ0,

η = 0 and λ = 0 gives

0 =




0√
Nqn

0


+




1 0 0

0 Ω G′

0 G 0






η̂

λ̂

θ̂


+ op(1).

Using the formula for the inverse of a block matrix yields



η̂

λ̂

θ̂


 =




1 0 0

0 P 0

0 0 Σ







0√
Nqn

0


+ op(1),

as desired.

Proof of Theorem 3

The consistency part follows by noting that γ̃1(η̂+λ̂′q̂i)/N = ψ1(η̂+λ̂′q̂i)/N = N−1+Op(N
−1)

and, thus, p̂A =
∑N

i=1 1(w ∈ A)γ̃1(η̂+ λ̂′q̂i)/N =
∑N

i=1 1(w ∈ A)/N + op(1) and by the WLLN

p̂A
p−→ E[1(w ∈ A)] = pA. First, notice that the MD estimator for the augmented parameter

vector β = (pA, θ) is the solution to

min
β,π

∑
γ(Nπi), s.t.

N∑

i=1

πiqi(θ) = 0,

N∑

i=1

πi1(wi ∈ A) − pA = 0,

N∑

i=1

πi = 1.

It is easy to verify that
∑N

i=1 πi1(wi ∈ A)−pA = 0 is not binding and, thus, the MD estimator

of pA is p̂A =
∑N

i=1 1(w ∈ A)π̂i where π̂i (i = 1, . . . , N) are the solutions to the MD problem

that does not impose the constraint and optimizes over θ and πi (i = 1, . . . , N). Asymptotic

normality and semiparametric efficiency follows from Theorem (3); the asymptotic variance of

β is then given by

V (β) :=

(
1 0

0 G

)(
pA(1 − pA) −E(1(w ∈ A)q(w, θ)′)

−E(1(w ∈ A)q(w, θ)) Ω

)−1(
1 0

0 G′

)
.

By simple algebra it can be show that the (1, 1) element of V (β) is VA. Q.E.D.
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Proof of Proposition 4

Taylor expansion of the first order condition that determine the Lagrange multiplier η̂, ‖λ̂‖ =

Op(N
−1/2), uniform convergence of

∑N
i=1 qi(θ)qi(θ)

′ to Ω, and Lemma 3 give

0 =

N∑

i=1

ψ1(η̂ + λ̂′q̂i) − 1 = η̂ + λ̂′q̂ + (ψ3/2)λ̂
′Ωλ̂+Op(N

−3/2).

Substituting λ̂ = −Ω−1q̂ +Op(N
−1)—which is obtained by a similar expansion from the first

order conditions for λ— we have

η̂ = (1 − ψ3/2)q̂
′Ω−1q̂ +Op(N

−3/2).

Thus, for ψ3 6= 2,

Nη̂

(1 − ψ3/2)
= Nq̂′Ωq̂ + op(1).

GEL(θ̃) expands as

P̃N (θ̃, τ̃ ) = τ̃ ′q̃ + τ̃ ′Ωτ̃ /2 + op(N
−1) = −qn(θ̃)′Ω−1qn(θ̃)/2 + op(N

−1).

D(θ̂) expands as

P̂N (θ̂, η̄, λ̂) = λ̂′q̂ + λ̂′Ωλ̂/2 +Op(N
−2) = −qn(θ̂)′Ωqn(θ̂)/2 + op(N

−1).

Also, LM(θ̂) = LM(θ̃)+op(1) and LM(θ̃) = Nqn(θ̃)
′Ω−1qn(θ̃)+op(1). The result follows from

from as in Hansen (1982) that Nqn(θ̂)
′Ω−1qn(θ̂)

d−→ χ2(M −K) for any consistent estimator

of θ0. Q.E.D.

B Asymptotic Expansions

For the sake of notational clarity, we use—through this appendix—the following conventions

for the partial derivatives: ∇rq
j
i denotes the partial derivatives of the j-th element of q with

respect of the r −M − 1 element of θ. That is, ∇rq
j
i = ∂qji /∂β

r = ∂qji /∂θ
r−M−1. The first

partial derivatives are given by

∂Qji
∂βk

= qji q
k
i ,

∂Qji
∂βr

= ∇rq
j
i ,

∂Qri
∂βj

= ∇rq
j
i ,

∂Qsi
∂βt

= 0.
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The partial second null derivatives are:

∂Qji
∂βk∂βℓ

= ψ3q
j
i q
k
i q
ℓ
i ,

∂Qji
∂βk∂βr

= qki∇rq
j
i + qji∇rq

k
i ,

∂Qji
∂βr∂βs

= ∇r,sq
j
i ,

∂Qri
∂βk∂βℓ

= qki∇rq
ℓ
i + qℓi∇rq

k
i ,

∂Qri
∂βk∂βs

= ∇r,sq
k
i ,

∂Qri
∂βs∂βt

= 0.

The partial third null derivatives are:

∂Qji
∂βk∂βℓ∂βm

= ψ4q
j
i q
k
i q
ℓ
iq
m
i ,

∂Qji
∂βk∂βℓ∂βr

= ψ3

(
qki q

ℓ
i∇rq

j
i + qji q

ℓ
i∇rq

k
i + qji q

k
i∇rq

ℓ
i

)
,

∂Qji
∂βk∂βr∂βs

= ∇sq
k
i∇rq

j
i + ∇sq

j
i∇rq

k
i + qji∇r,sq

k
i + qki∇r,sq

j
i ,

∂Qji
∂βr∂βs∂βt

= ∇r,s,tq
j
i ,

∂Qri
∂βk∂βℓ∂βm

= ψ3

(
qℓiq

m
i ∇rq

k + qki q
m
i ∇rq

ℓ + qki q
ℓ
i∇rq

m
)
,

∂Qri
∂βk∂βℓ∂βs

= ψ3

(
∇sq

k
i∇rq

ℓ
i + ∇sq

ℓ
i∇rq

t
i + qki∇r,sq

ℓ
i + qℓi∇r,sq

k
i

)
,

∂Qri
∂βk∂βs∂βt

= ∇r,s,tq
k
i ,

∂Qri
∂βs∂βt∂βu

= 0.

Define the following quantities

κa = E(Za), κa,b = E(ZaZb), κa,b,c = E(ZaZbZc), . . .

and so forth. Since µjk, µjr, and µrs represent the (j, k) elements, the (j, r) elements, and the

(r, s) elements of the inverse of Jacobian of the moment conditions, respectively, the following

identities hold:

µjsµkmκj,k = 0

µjkµℓrκj,ℓ = 0

µjkµℓmκj,ℓ = µkm

µjrµksκj,k = −µrs.

(A.9)

The above identities, which are central in deriving the results of this appendix, also hold for
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permutations of the indexes in lieu of the symmetry of the inverse of Jacobian of the moment

conditions.

Derivation of Equation (10)

The Op(N
−1) expansion for δ̂r, r ∈ {M + 2,M +K + 1} given in equation (9) reduces to

δ̂r = −µrjZj + T r/
√
N +Op(N

−1),

where

T r = µrjµkℓZjkZℓ + µrjµskZjsZk + µrsµkℓZskZℓ

− (µrjµkℓZjZkZℓ + µrjµstZjZsZt + µrsµjkZrZjZk)/2.

The asymptotic bias of
√
N(θ̂ − θ0) is given, after simplifications implied by (A.9) and by the

form of the null partial derivatives, by

E(δ̂r) = µrjµkℓκjk,ℓ + µrjµskκjs,k + µrsµkℓκsk,ℓ

− (µrjµkℓµjkℓ + µrjµstµjst + µrsµjkµrjk)/2 +O(N−1).

The expressions for the expected values of combination of the Z ′s appearing in the previous

expression are given by

κjk,ℓ = E(qji q
k
i q
ℓ
i ), κjs,k = E(∇sq

j
i q
k
i )

κsk,ℓ = E(∇sq
k
i q
ℓ
i ), µjkℓ = ψ3E(qji q

k
i q
ℓ
i )

µjst = E(∇s,tq
j
i ), µrjk = E(qji∇rq

k) + E(qki ∇rq
j).

Noting that by symmetry of µjk we have µrsµjkµrjk = µrsµjkE(qji∇rq
k)+µrsµjkE(qki ∇rq

j) =

2 × µrsµjkE(qki∇rq
j), it follows that

E(δ̂r) = µrjµkℓµjk,ℓ + µrjµskµjs,k + µrsµkℓµsk,ℓ

− (µrjµkℓµjkℓ + µrjµstµjst + µrsµjkµrjk)/2 +O(N−1)

= (1 − ψ3/2)µ
rjµklE(qji q

k
i q
ℓ
i )/

√
N + µrj

[
µskE

(
qki∇sq

j
i

)
− µstE

(
∇s,sq

j
i

)
/2
]
/
√
N,

giving, thus, the desired result.

Q.E.D.
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Proof of Theorem 5

Using the index convention, the MSE of the MDE/GEL estimator obtained from the objective

function ψ is given by

E(δ̂rψ δ̂
s
ψ) = E(irψ,N i

s
ψ,N ) + E

[
(brψ,N/

√
N + crψ,N/N)isψ,N

]

+ E
[
irψ,N (bsψ,N/

√
N + csψ,N/N)′

]
+ o(N−1).

The difference between the MSE of the MD/GEL estimator obtained from ψ and the MSE of

the MD/GEL estimator obtained from ψ′ is thus given by the difference of the corresponding

terms in the relative expansions. Since δ̂ψ and δ̂ψ′ are first order equivalent, the difference in

MSE reduces to

E(δ̂rψ δ̂
s
ψ) − E(δ̂rψ′ δ̂sψ′)

= E
[
(brψ,N/

√
N + crψ,N/N)isψ,N − (brψ′,N/

√
N + crψ′,N/N)isψ′,N

]

+ E
[
irψ,N (bsψ,N/

√
N + csψ,N/N) − irψ′,N (bsψ′,N/

√
N + csψ′,N/N)

]
+ o(N−1).

Now we inspect the terms involved in the previous expression to conclude that if ψ3 = ψ′
3 the

only terms that differ in the expansion of the MSE of δ̂rψ and δ̂rψ′ are the expectations of the

product of the score and the Op(N
−1) term cψ,N/N . Note that,

E(irψ,N b
s
ψ,N ) = −µrjµsaµbkκab,j,k + µrjµs,k,ℓκj,k,ℓ/2.

Since µab,j,k = E(qji q
k
i ∂Q

a
i /∂β

b), µjkℓ = ψ3E(qji q
k
i q
ℓ
i ), and ψ3 = ψ′

3 we have thatE(irψ,N b
s
ψ,N/

√
N)−

E(irψ′,Nb
s
ψ′,N/

√
N) = 0. Thus,

E(δ̂rψ δ̂
s
ψ) − E(δ̂rψ′ δ̂sψ′) = E

[
(crψ,N/N)isψ,N − (crψ′,N/N)isψ′,N

]

+ E
[
irψ,N (csψ,N/N) − irψ′,N (csψ′,N/N)

]
+ O(N−2).

Further,

E(irψ,N c
s
ψ,N ) = µrjµsaµbcµdkκab,cd,j,k − µrjµs,k,bµcℓκj,bc,k,ℓ + µrjµsaµb,k,ℓκab,j,k,ℓ

−µrjµs,k,ℓµm,d,eµbeκj,k,ℓ,m + µrjµsaµkbµℓcκabc,j,k,ℓ/2 + µrjµs,k,ℓ,mκj,k,ℓ,m/6.

The only terms that enters E(irψ,N c
s
ψ,N ) that does depend on ψ4 is µrjµs,k,ℓ,mµj,k,ℓ,m/6. This

last term is in turn equal to

µrjµsaµkbµℓcµmdµabcdκj,k,ℓ,m,
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and will depend on ψ4 only for a, b, c, d ∈ (2, . . . ,M + 1). Thus,

E(δ̂rψ δ̂
s
ψ) − E(δ̂rψ′ δ̂sψ′) = (µrjµsn + µsjµrn)µkoµℓpµmlµnoplκj,k,ℓ,m/N,

where

κj,k,ℓ,m = E

[
1√
N

N∑

i=1

qji
1√
N

N∑

i=1

qki
1√
N

N∑

i=1

qℓi
1√
N

N∑

i=1

qmi

]
,

which is equivalent to

κj,k,ℓ,m = E(qji q
k
i q
ℓ
iq
m
i )/N + κj,kκℓ,m[3] + κk,j,ℓκm[4] + κjκkκℓm[6] + κjκkκℓκm,

where, for example,

κj,kκℓ,m[3] = κj,kκℓ,m + κj,ℓκk,m + κj,mκℓ,m.

Here, the notation [3] denotes the sum over the three partitions of four indexes. Since κj = 0

and, by assumption, E(qji q
k
i q
ℓ
iq
m
i ) = O(1), the expression for κj,k,ℓ,m simplify to

κj,k,ℓ,m = κj,kκℓ,m[3] +O(N−1).

The difference in the (r, s) element of the MSE of the two estimators reduces to

E(δ̂rψ δ̂
s
ψ) − E(δ̂rψ′ δ̂sψ′) = (µrjµsn + µsjµrn)µkoµℓpµmlµnoplκj,kκℓ,m[3]/N +O(N−2).

Applying the identities in (A.9) yields

(µrjµsn + µsjµrn)µkoµℓpµmlµnoplκj,kκℓ,m[3]/N = 0,

giving, thus, the desired result. Q.E.D.
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Figure 1: Implied divergence functions. For Quartic Tilting and Hyperbolic Tilting the divergences are obtained by numerically
inverting the first derivative of ψqt and ψhton a grid of points covering (0, 4) to obtain ψ̃qt1 and ψ̃ht1 and then by calculating
γqt(x) = xψ̃qt1 (x) − ψqt(ψ̃qt1 (x)) and γht(x) = xψ̃ht1 (x) − ψht(ψ̃ht1 (x)).
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Figure 2: Empirical Likelihood, Exponential Tilting and Modified Empirical Likelihood divergences.
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Figure 3: Empirical sampling distributions of the estimators based on γel(x, εN ), γel(x, ε̄),
γht(x) and γqt(x; ν), ε = 0.99 and εN = 1 −N−1.
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Name γ γ1 γ̃1 ψ ψ1 ψ̃1 A ψ3(1)

Empirical − lnx+ x− 1 1 − 1
x 1/(1 − x) − ln(1 − x) 1/(1 − x) 1 − 1/x (−∞, 1) 2

Likelihood

Exponential x ln x− x+ 1 lnx expx expx− 1 expx lnx (−∞,+∞) 1
Tilting

CUE x2/2 − x+ .5 x− 1 1 + x x2/2 + x 1 + x x− 1 (−∞,+∞) 0

Hellinger -4(
√
x− 1) + 2(x− 1) 2 − 2√

x
(1 − .5x)−2 2(1 − x/2)−1 − 2 (1 − .5x)−2 2 − 2/

√
x (−∞, 2)

Divergence

Cressie Read xα+1−1
α(α+1) − (x−1)

α
xα−1

α (1 + α x)1/α (1+αx)
1+α

α −1
1+α (1 + α x)1/α xα/α− 1/α ‡ 1 − α

Family,
α 6= {−1, 0}

Hyperbolic NA NA NA esinh x − 1 coshx esinh x NA 2
Tilting

Quartic NA NA NA

{
h(x) x > x0

ec1x

c2
− c3 x 6 x0

†

{
h1(x) x > x0

c1

c2
ec1x x 6 x0

† NA (−∞,+∞) 2

Tilting

Table 1: Divergence and dual functions
‡ For the Cressie Read family of divergences the shape of the set A depends on α. If α > 0 and (1 + α)/α ∈ N an even number, then
A = (−∞,+∞).

† h(x) = e((1+x)4−4x−1)/12 + x− 1, x0 < 0, c1 = h1(x0)/(c3 + h(x0)), c2 = ec1x0/(h(x0) + c3), and c3 = h1(x0)
2/h2(x0) − h(x0).
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