
Simple Estimators for Binary Choice Models With
Endogenous Regressors

Yingying Dong and Arthur Lewbel�
University of California Irvine and Boston College

Revised February 2012

Abstract

This paper provides simple estimators for binary choice models with endogenous or mis-

measured regressors. Unlike control function methods, which are generally only valid when

endogenous regressors are continuous, the estimators proposed here can be used with limited,

censored, continuous, or discrete endogenous regressors, and they also allow for latent errors

having heteroskedasticity of unknown form, including random coef�cients. The variants of

special regressor based estimators we provide are numerically trivial to implement. We illus-

trate these methods with an empirical application estimating migration probabilities within

the US.
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1 Introduction

This paper describes numerically very simple estimators that can be used to estimate binary choice (bi-

nomial response) models when some regressors are endogenous or mismeasured, and when latent errors

can be heteroskedastic and correlated with regressors. These estimators have some signi�cant advantages

relative to leading alternatives such as maximum likelihood, control functions, and instrumental variables

linear probability models. The model and associated estimators also allow for latent errors having het-

eroskedasticity of unknown form, including random coef�cients on most of the regressors.

Consider a binary choice model D D I
�
X 0� C " � 0

�
, where D is an observed dummy variable that

equals zero or one, X is a vector of observed regressors, � is a vector of coef�cients to be estimated,

" is an unobserved error, and I is the indicator function that equals one if its argument is true and zero

otherwise. The special case of a probit model has " s N .0; 1/, while for logit " has a logistic distribution.

The initial goal is to estimate �, but ultimately we are interested in choice probabilities and the marginal

effects of X , looking at how the probability that D equals one changes when X changes.

Suppose also that some elements of X are endogenous or mismeasured, and so may be correlated with

". In addition, the latent error term " may be heteroskedastic (e.g., some regressors could have random

coef�cients) and has an unknown distribution. Let Z be a vector of instrumental variables that are uncorre-

lated with ". There are three common methods for estimating such models: maximum likelihood, control

functions, and linear probability models. We now brie�y summarize each, noting that each method has

some serious drawbacks, and we then discuss the relative advantage of this paper's alternative approach

based on Lewbel's (2000) special regressor estimator. A more complete comparison of these estimators,

including the special regressor method, is provided in Lewbel, Dong, and Yang (2012).

One method for estimation is maximum likelihood. Maximum likelihood estimation requires a com-

plete parametric speci�cation of how each endogenous regressor depends on Z and on errors. Let e denote

the set of errors in the required equations describing how each endogenous regressor depends on Z . In

addition to parameterizing these equations, maximum likelihood also requires a complete parametric spec-

i�cation of the joint distribution of e and " conditional upon Z . One drawback of maximum likelihood
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is the dif�culty in correctly specifying all this information. A second problem is that the resulting joint

likelihood function associated with binary choice and endogenous regressors will often have numerical

dif�culties associated with estimating nuisance parameters such as the covariances between e and ".

A second type of estimator for binary choice with endogenous regressors uses control functions. These

use methodology that can be traced back at least to Heckman (1976) and Heckman and Robb (1985), and

for binary choice with endogenous regressors can range in complexity from the simple ivprobit command

in Stata (for a model like that of Rivers and Vuong (1988) and Blundell and Smith (1989)), to Blundell and

Powell's (2003, 2004) estimators with multiple nonparametric components. Control function estimators

are typically consistent only when the endogenous regressors are continuously distributed (because one

cannot otherwise estimate the latent error e), and so should not be used when the endogenous regressors

are discrete or limited. Also, like maximum likelihood, control function estimators require models of the

endogenous regressors as functions of Z and e to be correctly speci�ed. In addition, control functions do

not permit many types of heteroskedasticity, and can suffer from numerical problems similar to those of

maximum likelihood.

A third approach to dealing with endogenous regressors is to estimate an instrumental variables linear

probability model, that is, linearly regress D on X using two stage least squares with instruments Z .

However, despite its simplicity and popularity, this linear probability model does not nest standard logit

or probit models as special cases, is generally inconsistent with economic theory for binary choice, and

can easily generate silly results such as �tted choice probabilites that are negative or greater than one.

Additional drawbacks of the linear probability model are documented in Lewbel, Dong, and Yang (2012).

One reason for the popularity of the linear probability model, despite its serious �aws, is that for

true linear regressions, two stage least squares has many desirable properties. In linear regression, two

stage least squares does not require a correct speci�cation, or indeed any speci�cation, of models for the

endogenous regressors. One might interpret the �rst stage of two stage least squares as a model of the

endogenous regressors, but unlike maximum likelihood or control function based estimators, linear two

stage least squares does not require the errors in the �rst stage regressions to satisfy any of the properties
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of a correctly speci�ed model. Linear two stage least squares only requires that the instruments Z be

correlated with regressors and uncorrelated with errors. Linear two stage least squares also allows for

general forms of heteroskedasticity. Special regressor estimators possesses these desirable properties of

linear two stage least squares, but without the drawbacks of the linear probability model.

This paper provides a simpli�ed version of Lewbel's (2000) special regressor estimator. It overcomes

all of the above listed drawbacks of linear probability models, control functions, and maximum likelihood.

The special regressor based estimator consistently estimates �, nests logit and probit as special cases, al-

lows for general and unknown forms of heteroskedasticity (including, e.g., random coef�cients), does not

require correctly speci�ed models of the endogenous regressors, does not require endogenous regressors

to be continuously distributed (e.g., permitting censored or discrete endogenous regressors), and does not

suffer from computational convergence dif�culties because it does not require numerical searches.

The price to be paid for these advantages is that the special regressor estimator requires one exogenous

regressor to be conditionally independent of ", appear additively to " in the model, and be conditionally

continuously distributed with a large support (though, as we discuss later, the support does not need to

be as large as the �rst papers in this literature suggest). Call this special regressor V . Only one special

regressor is required, no matter how many endogenous regressors appear in the model.

Let S denote the vector consisting of all the instruments and all the regressors other than V . A dif�culty

in implementing Lewbel's (2000) special regressor estimator is that it requires an estimate of the density

of V , conditional upon S. In this paper we propose simple semiparametric speci�cations of this density,

thereby yielding special regressor estimators that are numerically very easy and practical to implement.

Using a sample of individuals in the labor force, we empirically illustrate the special regressor method

by applying our estimator to a model of migration. Speci�cally, we model the probability of moving from

one state to another within the United States. Our special regressor V is an individual's age, which is

clearly exogenous and continuous. The model contains both a discrete (binary) and a continuous endoge-

nous regressor, namely, home ownership and family income.

For this model, linear probability is generically inconsistent as noted above, while maximum likeli-
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hood would require fully specifying a joint model of migration, home ownership, and income. Control

function methods would also require modeling these variables, and will not in general be feasible here

because homeownership is discrete. In contrast to the dif�culty of maximum likelihood and the incon-

sistency of control function and linear probability based estimates, we show that our simpli�ed special

regressor based estimator is numerically trivial to implement and provides reasonable estimates for this

model.

1.1 Normalization of the Binary Choice Model

Let V be some conveniently chosen exogenous regressor that is known to have a positive coef�cient, and

now let X be the vector of all the other regressors in the model. We now write the binary choice model as

D D I .X 0� C V C " � 0/ (1)

where the variance of " is some unknown constant � 2" , and � is a vector of coef�cients to be estimated.

Models like probit often normalize the variance of the error " to be one, but it is observationally

equivalent to instead normalize the positive coef�cient of a regressor to be one. Estimation of choice

probabilities (propensity scores) and of marginal effects are unaffected by this choice of normalization.

For special regressor estimators, equation (1) is more convenient than normalizing the variance of " to one.

The economics of some applications provide a natural scaling , e.g., if D is the decision of a consumer to

purchase a good and V is the negative logged price of the good, then having demand curves be downward

sloping determines the sign of the coef�cient of V , and in this scaling X 0�C" is the log of the consumer's

reservation price (that is, their willingness to pay) for the good.

If unknown a priori, the sign of the coef�cient of V can be determined as the sign of the estimated

average derivative E[@E.D jV; X/=@V ], or weighted average derivative such as Powell, Stock, and Stoker

(1989). The sign of this estimator converges faster than rate root n, so a �rst stage estimation of the sign

won't affect the later distribution theory. Even simpler is to just graph the nonparametric regression of D

on V and X , and see if the estimated function is upward or downward sloping in V .
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1.2 The Special Regressor Method - Literature Review

The special regressor method is characterized by three assumptions. First, it requires additivity between

the special regressor V and the model error " (or some function of "). In standard binary choice models

where the latent variable, X 0�CV C", is linear in regressors and an error term, all regressors in the model

satisfy this assumption. Second, it requires the special regressor V to be conditionally independent of the

model error ", conditioning on other covariates. If the distribution of " is independent of the exogenous

regressors (e.g., is homoskedastic), then any exogenous regressor will satisfy this assumption. Third, the

special regressor needs to be continuously distributed with a large support, though this last condition can

sometimes be relaxed (see Magnac and Maurin 2007, 2008).

The special regressor method has been employed in a wide variety of limited dependent variable

models including binary, ordered, and multinomial choice as well as censored regression, selection and

treatment models (Lewbel 1998, 2000, 2007a), truncated regression models (Khan and Lewbel 2007),

binary panel models with �xed effects (Honore and Lewbel 2002, Ai and Gan 2010), dynamic choice

models (Heckman and Navarro 2007, Abbring and Heckman 2007), contingent valuation models (Lew-

bel, Linton, and McFadden 2008), market equilibrium models of multinomial discrete choice (Berry

and Haile 2009a, 2009b), games with incomplete information (Lewbel and Tang (2011), and a variety

of models with (partly) nonseparable errors (Lewbel 2007b, Matzkin 2007, Briesch, Chintagunta, and

Matzkin 2009). Additional empirical applications of special regressor methods include Anton, Fernandez

Sainz, and Rodriguez-Poo (2002), Cogneau and Maurin (2002), Goux and Maurin (2005), Stewart (2005),

Avelino (2006), Pistolesi (2006), Lewbel and Schennach (2007), and Tiwari, Mohnen, Palm, and van der

Loeff (2007). Earlier results that can be reinterpreted as special cases of special regressor based identi�ca-

tion methods include Matzkin (1992, 1994) and Lewbel (1997). Vytlacil and Yildiz (2007) describe their

estimator as a control function, but their identi�cation of the endogenous regressor coef�cient essentially

treats the remainder of the latent index as a special regressor. Recent econometric theory involving spe-

cial regressor models includes Jacho-Chávez (2009), Khan and Tamer (2010), and Khan and Nekipelov

(2010a, 2010b). The methods we propose in this paper to simplify special regressor estimation in binary
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choice models could be readily applied to many of the other applications of the method cited here, such

as ordered choice and selection models.

To illustrate how a special regressor works to identify limited dependent variable models, consider the

simple model D D I .�CVC" � 0/where " has an unknown mean zero distribution and V is independent

of ". Let F���" ./ and f���" ./ denote the probability distribution function and the probability density

function (respectively) of �� � ", and suppose this distribution has support given by the interval [L ;U ] .

Suppose we wish to estimate the constant �. In this model, E .D j V / D Pr .�� � " � V / D F���" .V /,

so by estimating the conditional mean of D given V , we estimate the distribution of �� � ", evaluated at

V . Once we know this distribution, we can calculate its mean, which is ��.

In particular, by the de�nition of an expectation, � D �E .�� � "/ D �
R U
L V f���" .V / dV D

�
R U
L V

�
@F���" .V / =@V

�
dV D �

R U
L V

�
@E .D j V / =@V

�
dV , which shows one way in which �

could be recovered from an estimate of E .D j V /. Note that this construction requires V to take on

all values in the interval [L ;U ], since we need to evaluate E .D j V / for all those values of V . This is

the sense in which special regressor estimation requires a large support. However, suppose that V has a

smaller support, say the interval [`; u] where L � ` < 0 andU � u > 0. Then we will only be able to es-

timatee� D � R u` V �@E .D j V / =@V � dV , which is in general not equal to �. But suppose the following
equality between upper and lower tails of f���" holds:

R `
L V f���" .V / dV D

R U
u V f���" .V / dV . Then

� D e� and the special regressor method estimator still works even though the support of V is not large
enough relative to the support of �C". This is tail symmetry, which is described in more detail in Magnac

and Maurin (2007). Even when tail symmetry does not hold exactly, the size of bias term ��e� will equal
the magnitude of the difference between these two integrals, and so the the bias resulting from applying

special regressor methods when the support of V is too small will generally be small if the density of "

either has thin tails or is close to symmetric in the tails.

In the more general model D D I .X 0� C V C " � 0/ with instruments Z , the conditional expectation

E .D j V; X; Z/ will equal the conditional distribution of X 0� C " conditioning on X and Z , evaluated at

V , and this can be used to identify � (and the distribution of "). Lewbel (2000) proposes a shortcut for
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directly estimating � that avoids the step of estimating E .D j V; X; Z/, however, this shortcut requires

the conditional density of V given X and Z . This is the step that we simplify in this paper.

2 Special Regressor Binary Choice With Endogenous Regressors

Assume that D D I .X 0�CV C" � 0/ and that some or all of the elements of X are endogenous. Assume

Z has the standard properties of instruments in linear regression models, i.e., that E
�
Z X 0

�
has rank equal

to the number of elements of X , and that E .Z"/ D 0. As usual, Z would include all elements of X that

are exogenous, including a constant. The special regressor V is not be included in Z .

Unlike linear models, having E
�
Z X 0

�
full rank and E .Z"/ D 0 is not suf�cient to identify � in the

binary choice model. But by adding assumptions regarding the special regressor V , Theorem 1 in the

Appendix shows how to construct a variable T having the property that T D X 0� Ce" and E .Ze"/ D 0.
We will then be able to identify and estimate � by a linear two stage least squares regression of T on X

using instruments Z , i.e., eZ D Z 0E �Z Z 0��1 E �Z X 0� and � D E �eZ X 0��1 E �eZT �.
De�ne S to be the union of all the elements of X and Z , so S is the vector of all the instruments and

all of the regressors except for the special regressor V . The additional information that will be required

regarding V is a semiparametric model of the form V D g .U; S/ where U is an error term.

2.1 Simplest Estimator

To make estimation based on Theorem 1 in the appendix simple, a convenient parametric model is chosen

here for g. This is given in Corollary 1. We then propose some generalizations that impose less restrictive

assumptions on the special regressor while still being numerically simple to implement.

COROLLARY 1: Assume D D I .X 0� C V C " � 0/, E.Z"/ D 0, E .V / D 0, V D S0b C U ,

E .U / D 0, U ? .S; "/, and U s f .U /, where f .U / denotes a mean zero density function having

support supp.U / that contains supp.�S0b � X 0� � "/. De�ne T by

T D [D � I .V � 0/] = f .U / (2)
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Then T D X 0� Ce" where E .Ze"/ D 0.
Corollary 1 assumes that the function g is linear in covariates S and an error U . By Theorem 1,

other regular parametric models for g could be assumed instead. This particular model is chosen for its

simplicity. It can be readily checked that the model in Corollary 1 satis�es the assumptions of Theorem 1.

The probability density function f could be parametrically or nonparametrically estimated. Any dis-

tribution having support equal to the whole real line will automatically satisfy the required support as-

sumption in Corollary 1. As noted earlier, this large support assumption could alternatively be replaced

by the " tail symmetry assumptions of Magnac and Maurin (2007).

Other than the assumed model for the special regressor V , nothing is required for estimation using

Corollary 1 other than what would be needed for a linear two stage least squares regression, speci�cally,

that E.Z X 0/ have full rank and E.Z"/ D 0.

Based on Corollary 1 we have the following simple estimator. Assume we have data observations Di ,

X i , Zi , and Vi . Recall that Si is the vector consisting of all the elements of X i and Zi . Also note that X i

and Zi should include a constant term.

ESTIMATOR 1

Step 1. Demean Vi . Let bb be the estimated coef�cients of S in an ordinary least squares linear
regression of V on S. For each observation i , construct data bUi D Vi � S0ibb, which are the residuals from
this regression.

Step 2. For each i let bfi be a nonparametric density estimator given later by equations (4) or (5).
Alternatively, estimate a parametric f using bUi . For example, if f is normal or otherwise parameterized by
its variance as f

�
U j � 2

�
, then letb� 2 DPn

iD1
bU 2i =n and for each observation i de�ne bfi D f

�bUi j b� 2�,
where f is a standard normal (or other) density function.

Step 3. For each observation i construct data bTi de�ned as bTi D [Di � I .Vi � 0/] =bfi .
Step 4. Letb� be the estimated coef�cients of X in an ordinary linear two stage least squares regression

of bT on X , using instruments Z . It may be necessary to discard outliers in this step. Given b�, choice
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probabilities and marginal effects can be obtained as in Lewbel, Dong, and Yang (2012).

Details regarding nonparametric estimators for the density bfi are for convenience defered until later.
Estimator 1 differs from Lewbel (2000) mainly in that it assumes a parametric or semiparametric

model for V , while Lewbel (2000) uses a nonparametric conditional density estimator for V . However,

Lewbel (2000) is not strictly more general than Estimator A, since Theorem 1 and Corollary 1 allow V to

depend on all of the elements of X , including the endogenous regressors, while Lewbel (2000) assumes

the conditional density of V does not depend on endogenous regressors.

This estimator is numerically trivial, requiring no numerical searches and no estimation steps more

complicated than linear regressions. It is therefore also fast and easy to obtain standard errors, test sta-

tistics, or con�dence intervals by an ordinary bootstrap, drawing observations Di , X i , Zi , and Vi with

replacement.

In Estimator 1, nothing constrains the regression of V on S in the �rst step to be linear. For example,

if necessary this �rst step regression could include squared and cross terms of S. The later steps of the

estimator are estimator are unchanged by this generalization.

Also, Estimator 1 can be easily modi�ed to allow for more general parametric speci�cations of f . In

particular, suppose f is any regular continuous density function parameterized by a vector � , which we

may denote as f .U j �/. Then in step 2 we could estimateb� by maximizingPn
iD1 ln f

�bUi j ��, and then
let bfi D f

�bUi jb�� for each observation i . This step is then just a maximum likelihood estimator for � .
2.2 Allowing for Heteroskedasticity in V

All the estimators in this paper allow the model errors " to be heteroskedastic, e.g., X having random

coef�cients does not violate the assumptions of Theorem 1 or Corollary 1. More generally, the model

errors " can have second and higher moments that depend on the regressors in arbitrary, unknown ways.

However, the model in the previous section assumes that only the mean of the special regressor V is

related to the other covariates S. In this section we provide a more general model for V that allows higher

moments of V to depend on S, yielding a slightly more complicated, but still numerically trivial, estimator.
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In a small abuse of notation, let S2 denote the vector that consists of all the elements of S, and the

squares and cross products of all the elements of S.

COROLLARY 2: Assume D D I .X 0� C V C " � 0/, E.Z"/ D 0, E .V / D 0, U ? .S; "/,

V D S0b C
�
S20c

�1=2U , E .U / D 0, var .U / D 1, and U s f .U / where f .U / is a density function that

has mean zero, variance one, and support supp.U / that contains supp
h
.�S0b � X 0� � "/

�
S20c

��1=2i.
De�ne T by

T D [D � I .V � 0/]
��
S20c

�1=2�
= f .U / (3)

Then T D X 0� Ce" where E .Ze"/ D 0.
Corollary 2 introduces a multiplicative heteroskedastic term, so the errors in the V regression are now�

S20c
�1=2U instead of just U . Corollary 2 follows from Theorem 1 with g .U; S/ D S0b C .S20c/1=2U ,

which puts the term S20c into equation (3). As with Corollary 1, the large support assumption for U could

alternatively be replaced by the " tail symmetry assumptions of Magnac and Maurin (2007). The estimator

corresponding to Corollary 2 is an immediate generalization of Estimator 1, as follows.

ESTIMATOR 2

Step 1. Demean Vi . Let bb be the estimated coef�cients of S in an ordinary least squares linear
regression of V on S. For each observation i , construct data bWi D Vi � S0ibb, which are the residuals of
this regression.

Step 2. Letbc be the estimated coef�cients of S2 in an ordinary least squares linear regression of bW 2

on S2. For each observation i , construct data bUi D �
S20i bc��1=2 bWi .

Step 3. For each i let bfi be a nonparametric density estimator given later by equation (4) or (5),
alternatively, de�ne bfi D f

�bUi� where f is a normal or any other distribution that has mean zero and
variance one.

Step 4. For each observation i construct data bTi de�ned as bTi D [Di � I .Vi � 0/] h�S20i bc�1=2i =bfi .
Step 5. Same as step 4 of Estimator 1.
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In Estimator 2, step 2 comes fromW D .S20c/1=2U withU ? S, so E
�
W 2 j S

�
D S20cE

�
U 2
�
D S20c.

The step 2 regression of bW 2 on S2 is the same as the regression that would be used for applying White's

(1980) test for heteroskedasticity in the step 1 regression of V on S. An easy way to test if Estimator 2 is

required instead of Estimator 1 is to perform White's test for heteroskedasticity on the step 1 regression

of V on S. The presence of heteroskedasticity in this regression would then call for Estimator 2.

As with Estimator 1, there is nothing that constrains the functions S0b and S20c to be linear. One could

if necessary specify these as higher order polynomial regressions, or for example one could estimate eS20c

or
�
S20c

�2 in place of S20c everywhere and thereby ensure that the variance estimate is always positive.
2.3 Convergence Rates and Increasing Ef�ciency

By Theorem 1, virtually everywhere in this paper that the term I .V � 0/ appears, it can be replaced with

M.V /, which is any mean zero distribution function (on the support of V ) chosen by the econometrician.

In particular, choosing M to be a simple differentiable function like M.V / D I .V � �1/min .V C 1; 2/

(corresponding to a uniform distribution on -1 to 1) can simplify the calculation of limiting distributions

and possibly improve the performance of the estimators.

To obtain standard error estimates without bootstrapping, and possibly to improve ef�ciency, the pa-

rameters in Estimators 1 and 2 can be estimated simultaneously instead of sequentially using GMM.

Speci�cally, assuming f is parameterized by its variance, the steps comprising Estimator 1 correspond to

the following moment conditions:

E
�
S
�
V � S0b

��
D 0, E

h�
V � S0b

�2
� � 2

i
D 0, E

"
Z

 
D � I .V � 0/
f
�
V � S0b j � 2

� � X 0�!# D 0
These moments correspond respectively to the regression model of V , the estimator of the variance of U ,

and the transformed instrumental variables special regressor estimator.

If the density of f is parameterized more generally as f .U j �/ for some parameter vector � , then the

moment E
h�
V � S0b

�2
� � 2

i
D 0 could be replaced by E

�
@ ln f

�
V � S0b; �

�
=@�

�
D 0, which is the

vector of score functions associated with maximum likelihood estimation of � .
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The moments corresponding to Estimator 2 are

E
�
S
�
V � S0b

��
D 0, E

h
S2
��
V � S0b

�2
� S20c

�i
D 0, E

�
Z
�
D � I .V � 0/
f .V � S0b/

�
S20c

�1=2
� X 0�

��
D 0

As before, if f is parameterized by parameters � in addition to its mean and variance, then one could add

the score functions for estimating � to this set of moments.

Applying ordinary two step GMM to either of these sets of moments provides estimates of the desired

parameters � along with nuisance parameters b and � 2 (or b and c for Estimator 2) that ef�ciently combine

these estimation steps in the usual way for GMM, and also delivers asymptotic standard errors (possibly

replacing I .V � 0/ with M.V / as above). Alternatively, given the simplicity of the estimators, one could

easily obtain standard errors, con�dence intervals, or test statistics via bootstrapping.

We do not provide formal limiting distribution theory assumptions here, since the estimator is just

GMM. However, a potential concern is that the de�nition of T involves dividing by a density. This could

result in T having in�nite variance, violating standard GMM limiting distribution theory. As shown by

Khan and Tamer (2010), this generally leads to slower than root n convergence rates, unless the tails of

U are very thick, or the distribution of " is bounded, or Magnac and Maurin (2007) type tail symmetry

conditions hold. If these conditions do not hold, then it could be necessary to apply the thick tailed GMM

asymptotics of Hill and Renault (2010), or the asymptotics for irregularly identi�ed models as described

in Khan and Tamer (2010), and Khan and Nekipelov (2010a, 2010b).

A practical implication of this construction of T is that one should watch out for outliers in the �nal

step regression of bT on X . In particular, in some contexts it may be desirable to trim the data (that is,
remove observations i where bTi is extremely large in magnitude) before running the last step regression.
Another implication is that the larger the variance (or other measures of spread such as interquartile

range) of U or V , the better the estimator is likely to perform in practice. This should be borne in mind

when choosing V . Lewbel (2000) found that special regressor estimation tended to perform well when

the variance of V was as big or bigger than the variance of X 0� C ".
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2.4 More General Special Regresor Models and Estimators

Estimators 1 and 2 require the density of U , which could be either parametric or nonparametrically esti-

mated. One possible nonparametric estimator of f is the standard one dimensional nonparametric kernel

density estimator. This consists of replacing step 2 in estimator 1 or step 3 in estimator 2 with

bfi D 1
nh

nX
jD1
K

 bUi � bU j
h

!
for i D 1; :::; n (4)

where the kernel function K is a symmetric density function like a standard normal density, and h is

a bandwidth. Even with this nonparametric component, b� can be root n consistent and asymptotically
normal, based on well known sets of regularity conditions, such as Newey and McFadden (1994), for two-

step semiparametric estimation. The estimator forb� will still not require any numerical searches (except
possibly a one dimension search for the choice of bandwidth h), so bootstrapping would be entirely

practical for estimating con�dence intervals, tests, or standard errors, based on, e.g., Chen, Linton, and

Van Keilegom (2003) or Escanciano, Jacho-Chávez, and Lewbel (2010).

Instead of choosing a kernel and bandwidth, one could also use the sorted data density estimator of

Lewbel and Schennach (2007), which is speci�cally designed for use in estimating averages weighted by

the inverse of a density, as is the case here. Given n observations of bUi , sort these observations from lowest
to highest. For each observation bUi , let bUCi be the value of bU that, in the sorted data, comes immediately
after bUi (after removing any ties) and similarly let bU�i be the value that comes immediately before bUi .
Then the estimator is

bfi D 2=nbUCi � bU�i for i D 1; :::; n (5)

Equation (5) is not a consistent estimator of fi (its probability limit is random, not constant), but given

regularity, inverse density weighted averages of the form 1
n
Pn
iD15i=

bfi converge at rate root n, and our
estimators entail averages of this form, e.g., Estimator 1 has 5i D Zi .Di � I .Vi � 0//. Asymptotic

variance formulas are provided in Lewbel and Schennach (2007) and (in more generality) Jacho-Chávez

(2009).

In addition to avoiding speci�cation error in f , there is another advantage of using a nonparametric
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estimator for bfi . It follows from general results in Magnac and Maurin (2004) and Jacho-Chávez (2009)
that estimation of � will generally be more ef�cient using a nonparametric estimator of f than by using the

true density, analogous to the more well known result of Hirano, Imbens and Ridder (2003) that weighting

by a nonparametrically estimated propensity score is more ef�cient than weighting by the true propensity

score in treatment effect estimation.

The models presented so far assume that V depends on covariates only through its location and scale.

To allow for more general dependence of V on covariates, one could replace the assumption thatU ? S; "

in Theorem 1 with U ? S; " j R where R is one or more functions of covariates S. Corollaries 1 and

2 will then still hold replacing the unconditional density f .U / with the conditional density f .U j R/.

For example, R might equal S0b, or S0b and S20c, or R could equal one or more principal components

of S. To implement these extensions, one would need to replace bfi D bf .Ui / in the estimators with
fi D bf �Ui j bRi�. For example, we could let bRi D S0bb and then de�ne bf as a standard kernel estimator of
the conditional density of U given R.

Finally, it may sometimes be possible to increase ef�ciency, or increase the relative support of the

special regressor by combining some exogenous covariates to construct a V . For example, suppose the

model is D D I .X 0� C V1 C V2� C " � 0/, where both V1 and V1 C V2� satisfy the special regressor

assumptions, i.e., V1 is a special regressor and V2 (which could be discrete or otherwise have limited

support) is exogenous and independent of ". Then we can write down all the moments associated with

estimator 1 or estimator 2 in the previous section treating V as V1 and including �V2 in X 0�. These

moments will identify � and �. We can also write down all the moments associated with estimator 1 or 2

based on de�ning V as V1 C V2�. Then, to increase estimation ef�ciency, GMM could be applied to both

sets of moments (those corresponding to either de�nition of V ) simultaneously.

Applying GMM just to the set of conditions de�ning V as V1CV2� will not work, because they will fail

to identify �. However, if V D V1CV2� has a suf�ciently large support but V D V1 possibly does not, then

one could �rst obtain anb� by estimating E .D j V1 C V2�; X; Z/ using a conditional linear index model
estimator such as Ichimura and Lee (2006) or Escanciano, Jacho-Chávez, and Lewbel (2010), or just by
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weighted average derivative estimation of � D E
�
@E .D j V1; V2; X; Z/ =@V2

�
=
�
@E .D j V1; V2; X; Z/ =@V1

�
if both V1 and V2 are continuously distributed. Then, given a consistent b� by one of these methods, we
could construct bV D V1 C V2b� and use bV in place of V in this paper's estimators.

3 Empirical Illustration

In this section we illustrate our simple estimators (coded in Stata, available upon request) with an empirical

application. Let Di be the probability of an individual i migrates from one state to another in the United

States. Let age be the special regressor Vi , because it is exogenously determined, and human capital

theory suggests it should appear linearly (or at least monotonically) in a threshold crossing model of

the utility of migration. This is because workers migrate in part to maximize their expected lifetime

income, and by construction the gains in expected lifetime earnings from any permanent change in wages

decline linearly with age. Figure 1 provides strong empirical evidence for this relationship, showing a

�tted kernel regression of Di on age in our data, using a quartic kernel and bandwidth chosen by cross

validation. We also depict the same nonparametric regression cutting the bandwidth in half, to verify that

this near linearity is not an artifact of possible oversmoothing. Others have reported similar empirical

evidence (See, e.g., Dong 2010 and the references therein) in accordance with the above human capital

motivation for migration.

Pre-migration income and home ownership greatly affect the decision of whether to move or not.

Both are endogenous regressors in our binary choice model. Maximum likelihood would require an

elaborate dynamic speci�cation and an extensive amount of current and past information about individuals

to completely model their homeownership decision and the determination of their wages and other income

jointly with their migration decisions. See, e.g., Kennen and Walker (2011) for an example of a dynamic

structural income based model of migration. Control function methods are also not appropriate for this

application, because home ownership is discrete, and control functions are generally inconsistent when

used with discrete endogenous regressors (see, e.g., Dong and Lewbel 2012).

Our sample is 23 to 59 year old male household heads from the 1990 wave of the PSID, who have
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Figure 1: Nonparametric age pro�le of migration probabilities

completed education and who were not retired at the time of their interview. This is intended to largely

exclude people who are moving to retirement locations. The �nal sample has 4,689 observations, consist-

ing of 807 migrants and 3882 nonmigrants. We let D = 1 if an individual changes his state of residence

during 1991 - 1993, and 0 otherwise. We de�ne the special regressor V to be the negative of age, minus

its mean (ensuring it has a positive coef�cient and mean zero)

Our endogenous regressors are log(income), de�ned as the logarithm of family income averaged over

1989 and 1990, and homeowner, a dummy indicating whether one owns a home in 1990. The remaining

regressors comprising X , which we take as exogenous, are education (in years), number of children,

and dummy indicators for white, disabled, and married. Our instruments Z consist of the exogenous

regressors, along with government de�ned bene�ts received in 1989 and 1990, i.e., the value of food

stamps and other welfare bene�ts such as Aid to Families with Dependent Children (AFDC), and state

median residential property tax rates, computed from the 1990 U.S. Census of Population and Housing

and matched to the original PSID data. Government bene�ts have been used by others as instruments for

household income in wage and labor supply equations, based on their being determined by government

formulas rather than by unobserved attributes like ability or drive. Similarly, property tax rates affect
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homeownership costs and hence the decision of whether to own or rent, while being exogenously set by

government rules.

Note that although age is exogenously determined, that does not guarantee that age satis�es the re-

quired special regressor exogeneity assumptions, because age could affect the endogenous regressors in

ways that cause a violation of conditional independence (we'd like to thank Jeffrey Wooldridge for point-

ing this out). This concern may be partially mitigated by our inclusion of the endogenous regressors in S,

and hence in the model for V , since our estimator (unlike the original Lewbel 2000 version) only requires

U , not V , to satisfy conditional independence.

The special regressor formally requires �V to have the same or larger support than X 0� C ". As

discussed earlier, in practice �nite sample biases will tend to be small when measures of the empirical

spread of V (standard deviation or interquantile ranges) are comparable to, or larger than, those of X 0b�. In
our application, the standard deviation of X 0b� (usingb� from estimator 1) is either 16.3 or 12.4 depending
on the choice of estimator for bf (kernel or sorted density, respectively). These are at least comparable in
magnitude to the standard deviation of V , which is 9.0, though ideally one would want V to have a larger

spread. Moreover, much of this difference in spread is due to a small fraction of outliers in X 0b�. Quantile
measures of spread are similar, e.g., the difference between the 5th and 95th quantile of V is 30.0, while

that of X 0b� is 44.50 or 36.6.
Table 2 presents the estimated marginal effects of covariates by our two estimators. For comparison,

results from standard probit and ivprobit are also presented. Estimates of bU from both of our estimators
were somewhat skewed and kurtotic. Normality is rejected by the Jarque-Bera tests. We therefore used

nonparametric density estimates for bf .
Columns 1 and 2 of Table 2 are based on Estimator 1, (which assumes U is homoskedastic), using

(a) an ordinary kernel density estimator and (b) the sorted data estimator, respectively. The kernel density

estimator is given by equation (4). We used a standard Epanechnikov kernel function K (though the results

are not sensitive to the choice of kernel function) with bandwidth parameter h given by Silverman's rule.

The sorted data estimator is given by equation (5).
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Columns 3 and 4 of Table 2 are from Estimator 2, using (a) kernel and (b) sorted data density estima-

tors, respectively. White's (1980) test on the regression of V on S shows signi�cant heteroskedasticity,

indicating the more general Estimator 2 is necessary in this case. Recall that S2 in the heteroskedasticity

term S20c was de�ned to be the vector of all elements of S and all of their squares and cross products. The

total number of terms in S2 is rather high, so for parsimony we only included the squares and cross terms

of the most relevant regressors of S in the construction of S20c (equivalent to setting the coef�cients of

other elements of S2 equal to zero). Note that all of this discussion regarding heteroskedasticity refers only

to the equation for the special regressor V ; all our estimators permit the model error " to have variance

and higher moments that depend on S in arbitrary ways.

Table 2: The estimated migration equation - marginal effects

Dependent variable: migration (0/1)
Estimator
1-(a)

Estimator
1-(b)

Estimator
2-(a)

Estimator
2-(b)

ivprobit probit

age 0.003
(0.001)��

0.004
(0.001)���

0.002
(0.001)��

0.002
(0.0007)���

-0.0008
(0.001)

0.002
(0.0007)���

log(income) -0.013
(0.013 )

-0.012
(0.015)

-0.026
(0.014)�

-0.037
(0.014)��

0.065
(0.035)�

-0.009
(0.007)

homeowner -0.055
(0.031)�

-0.050
(0.033)

-0.043
(0.030)

-0.026
(0.033)

-0.330
(0.058)���

-0.086
(0.013)���

white 0.017
(0.012)

0.003
(0.012)

-0.004
(0.007)

-0.003
(0.006)

0.006
(0.014)

-0.010
(0.012)

disabled -0.165
(0.073)��

-0.134
(0.066)

-0.187
(0.041)���

-0.205
(0.041)���

0.018
(0.040)

-0.012
(0.033)

education 0.005
(0.002)��

0.006
(0.003)

0.003
(0.001)���

0.004
(0.001)���

0.0002
(0.003)

0.0004
(0.002)

married -0.004
(0.011)

0.018
(0.018)

0.050
(0.015)���

0.046
(0.015)���

0.020
(0.025)

-0.006
(0.017)

# of children 0.018
(0.006)���

0.019
(0.007)���

-0.006
(0.003)��

-0.006
(0.003)��

0.013
(0.005)���

0.010
(0.005)��

Note: Bootstrapped standard errors are in the parentheses; *signi�cant at the 10% level; **signi�cant at the 5%
level; ***signi�cant at the 1% level.

For comparison with Estimators 1 and 2, Column 5 of Table 2 uses the ivprobit estimator from Stata.

Let e1 and e2 respectively denote the errors in linear regressions of log(income) and the homeowner

dummy on the instruments Z . The ivprobit estimator assumes that e1, e2, and the latent binary choice

model error ", are jointly distributed as homoskedastic trivariate normal. A drawback of ivprobit is that
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this assumption cannot hold for a discrete endogenous variable like our homeowner dummy, because the

errors e2 in a linear probability model (which is what the linear regression of homeownership on Z is)

cannot be homoskedastic, and are generally nonnormal. As a result, ivprobit estimates, like other control

function estimators, are inconsistent when used with discrete endogenous regressors. In contrast, our

proposed Estimators 1 and 2 do not make any assumptions regarding properties of the errors e1 and e2.

The ivprobit estimator also does not allow " to be heteroskedastic. Finally, column 6 in Table 2 reports

ordinary probit estimates, which ignores any regressor endogeneity and possible heteroskedasticity in ",

and is provided here as a baseline benchmark.

Our estimators normalize the coef�cient of V to be one, so marginal effects are also reported in table

2, using formulas given in Lewbel, Dong, and Yang (2012). We report marginal effects because they have

more direct economic relevance than �, and because they are directly comparable across speci�cations,

including probit. The estimated marginal effect of negative age V is small but statistically signi�cant, and

is similar across all speci�cations except ivprobit. Unlike the other speci�cations, ivprobit gives V the

wrong sign, inconsistent with the human capital argument that potential wage gains from moving become

smaller as one ages.

Log income has a marginally signi�cant coef�cient in the heteroskedasticity corrected models, that

is, Estimator 2. One would expect income to have a signi�cant effect on migration. The relatively large

standard errors on this variable may be due to weakness in the government de�ned bene�ts instrument,

which for many people is zero. Unlike all the other estimators, the ivprobit estimates have a counterintu-

itive positive and statistically signi�cant sign for log income. Probit and Estimator 1 give negative income

effects, though small in magnitude compared to Estimator 2.

The endogenous homeowner dummy has a negative sign in all the estimators, consistent with the fact

that �xed costs of moving are higher if one is a homeowner. The estimated magnitude of this effect is

largest for ordinary probit, smallest for ivprobit, and roughly halfway between these two extremes in this

paper's estimators. Intuitively, people who buy a home should be those who do not want to move, so

homeownership should be negatively correlated with unobserved preference for migration. Ordinary pro-
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bit fails to account for this endogeneity of homeownership on migration and so yields an overestimate of

the negative impact of homeownership on migration probabilities, while ivprobit is inconsistent when en-

dogenous regressors are discrete, which may be causing ivprobit to overcompensate for this endogeneity.

Finally, being disabled signi�cantly reduces the probability of migration in all the models except for

ivprobit, and education has a small positive effect on migration across the board.

4 Conclusions

Commonly used methods to deal with heteroskedasticity and endogenous regressors in binary choice

models are linear probability models, control functions, and maximum likelihood. Each of these types

of estimators have some drawbacks. Unlike these other estimators (each of which only has some of the

following attractive features), the special regressor based estimators we provide here possess all of the

following attributes: They provide consistent estimates of the model coef�cients �, they nest logit and

probit as special cases, they allow for general and unknown forms of heteroskedasticity (including, e.g.,

random coef�cients), they do not require correctly speci�ed models of the endogenous regressors, they

do not require endogenous regressors to be continuously distributed, and they do not require numerical

searches. What special regressor estimators do require are ordinary instruments, and just one exogenous

regressor (no matter how many regressors are endogenous) to be conditionally independent of the latent

error " and be conditionally continuously distributed with a large support.

In this paper, we provide some variants of the special regressor model that are numerically almost

as trivial to implement as linear probability models. We apply our estimators to estimating migration

probabilities in the presence of both discrete and continuous endogenous regressors, and illustrate how

our special regressor estimators can be implemented in practice. We compare our estimators with the

standard probit and ivprobit in this empirical application.

Special regressor methods can be applied in a variety of settings in addition to binary choice. The

same models for V and f that are proposed here could be used to simplify these other applications as

well.
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6 Appendix

LEMMA 1: Assume the distribution of V given S is continuous. Then there exists a function g and a

random variable U such that V D g .U; S/ where U ? S.

PROOF OF LEMMA 1: De�ne U D FV jS .V j S/ where FV jS is the conditional distribution function V

given S. De�ne g to be the inverse of the function FV jS , so g is de�ned by V D g
�
FV jS .V j S/ ; S

�
.

Then by construction V D g .U; S/ where U ? S. In this construction U will have a uniform distribution

but one could more generally letU D ef �FV jS .V j S/� for any strictly monotonic ef to giveU some other
distribution, such as a normal.

Lemma 1 is not new, e.g., it is used in Vytlacil and Yildiz (2007) and Matzkin (2007). It is useful here

because Theorem 1 below assumes existence of g and U with U independent of S, and the lemma shows

that this assumption is made without loss of generality. The variableU can be interpreted as the error term

in a model g for the variable V . Later we will propose some simple functional forms for g.

Theorem 1 below generalizes Lewbel (2000), showing how to construct a variable T having the prop-

erty that E .ZT / D E
�
Z X 0

�
�, so a linear two stage least squares regression of T on X using instruments

Z yields the desired coef�cients �. Note this also proves point identi�cation of �.

THEOREM 1: Assume D D I .X 0� C V C " � 0/, E.Z"/ D 0, and V D g .U; S/. Assume supp.X 0� C

"/ � supp.�V /, E .V / D 0, g is differentiable and strictly monotonically increasing in its �rst element,

U ? .S; "/, and U is continuously distributed. Let f .U / be the probability density function of U .

Let M.V / be any mean zero distribution function on supp.V / that equals zero and one strictly inside

supp.V /.

De�ne T by

T D
D � M.V /
f .U /

@g.U; S/
@U

(6)

Then T D X 0� Ce" where E .Ze"/ D 0.
PROOF OF THEOREM 1: De�ne D� D X 0� C " so D D I .D� C V � 0/. We �rst prove the theorem

27



taking M .V / D I .V � 0/. By the de�nition of conditional expectation

E.T j S; "/ D
Z
supp.U jS;"/

I .D� C g.U; S/ � 0/� I .g.U; S/ � 0/
f .U /

@g.U; S/
@U

f .U j S; "/dU

D

Z
supp.U jR/

�
I .D� C g.U; S/ � 0/� I .g.U; S/ � 0/

� @g.U; S/
@U

dU

D

Z
supp.V jR/

�
I .D� C V � 0/� I .V � 0/

�
dV

where the second equality follows from U ? S; " which means f .U / D f .U j S; "/, and the third

equality uses a change of variables from U to V . If D� � 0 then

E.T j S; "/ D
Z
supp.V jR/

I .�D� � V � 0/dV D
Z 0

�D�
1dV D D�

and if D� � 0 then

E.T j S; "/ D
Z
supp.V jR/

�I .0 � V � �D�/dV D �
Z �D�

0
1dV D D�

This proves that E.T j S; "/ D X 0� C ". De�ninge" D T � X 0� we have
E.Ze"/ D E[Z.T � X 0�/] D E[E.Z.T � X 0�/ j S; "/]

D E[Z.E.T j S; "/� X 0�/] D E.Z"/ D 0:

To show the theorem holds for other choices of M.V /, replace D�M.V / in equation (6) with [D � I .V � 0/]C

[I .V � 0/� M.V /]. Then E.T j S; "/ equals the sum of the term given above and
R
supp.V jR/ [I .V � 0/� M.V /] dV .

Applying an integration by parts to this term gives

[I .V � 0/� M.V /] V jsupp.V jR/ �
Z
supp.V jR/

�
@M.V /
@V

VdV

The �rst term here is zero because M.V / is distribution function that equals zero and one strictly inside

the support of V , and the second term is zero because M.V / is a mean zero distribution function. So

E.T j S; "/ is unchanged by replacing I .V � 0/ with M.V /.

One way in which Theorem 1 generalizes previous results is that Lewbel (2000) used I .V � 0/ in

place of M.V /. and we will usually let M.V / D I .V � 0/. The usefulness of this extension, �rst

proposed by Lewbel and Tang (2012), is that taking M.V / to be a differentiable function can simplify

some limiting distribution theory.
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Recall that S consists of all the elements of X and Z . As long as V given S is continuously distributed,

the assumption that V D g .U; S/ with U independent of S holds without loss of generality. This is

because, as shown by Lemma 1, it is always possible to construct a function g and an error term U that

satis�es this independence assumption. Differentiability of g and continuity of the U distribution both

correspond to smoothness of the distribution function of V . Having E .V / D 0 is not really necessary, but

it simpli�es T . Setting the median of V to zero would have the same effect. In practice one could simply

recenter V (by demeaning or subtracting off the median) before using it in the model to make this hold.

Note that X and Z will generally include a constant term, so recentering V will have no impact on the

model.

Having E.Z"/ D 0 and rank of E
�
Z X 0

�
equal to the number of elements of � are just the minimal

conditions that would be required for two stage least squares estimation of a linear model with endogenous

regressors, so we maintain those minimal conditions in our nonlinear binary choice model.

The requirement that U be independent of " is nothing more than an exogeneity assumption regarding

the special regressor V . It says that after one has conditioned on other covariates, the remaining variation

in V is unrelated to the binary choice model error ".

Finally, the condition regarding the support of V is that the range of possible values of X 0� C " lies

in the range of possible values of �V , which implies that it is possible for V to be small enough or large

enough to drive D to zero or one. In the case where the support of X 0� C " is not bounded, this becomes

an identi�cation at in�nity argument as in Heckman (1990), though it should be noted that consistent

estimation of any moment, even a mean, requires observing data over their entire support, and Khan and

Tamer (2010) point out that similar requirements apply to standard average treatment effect estimators.

The required support assumption is not in general testable prior to estimation, because it depends on

�. After estimation ofb� one can check whether the values of X 0b� in the data lie in the range of observed
values of �V , but even then, the true supports of the regressors and the support of the latent " are not

known in general. So one may worry about the support condition holding in empirical applications, to

which there are a few responses.

First, in theory the support condition is easily satis�ed, since e.g., it holds if V contains an additive

component like an error term that is normal, t-distributed, or has any other full real line support distribu-
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tion.

Second, as described earlier, the large support assumption can be relaxed and replaced with a tail sym-

metry assumption. See Magnac and Maurin (2007) for details. The construction of T and the conclusion

of Theorem 1 is unchanged when the support of V is not as large as that of X 0�C ", provided that this tail

symmetry condition holds. Moreover, even if tail symmetry does not hold exactly, as described earlier the

asymptotic bias in estimation resulting from a violation of the large support assumption will generally be

small if the tails of the distribution of " are either thin or close to symmetric.

Third, Lewbel (2000, 2007a) shows that for special regressor based estimators, the �nite sample bias

in estimation ofb� also tend to be small when the variance or interquantile ranges of V are comparable to
or larger than the variance or interquantile ranges of X 0� C ". This makes intuitive sense, since in real

data what matters is not the hypothetical extreme values that might possibly be seen, but rather the spread

of values actually observed in the majority of the sample. Thus in practice one may check measures of the

relative spread of the distributions of V versus X 0b� to get a sense of whether the observed variation in V
is likely to be large enough to provide reasonably accurate estimates.
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