
Planar Beauty Contests∗

Mikhail Anufriev† John Duffy‡ Valentyn Panchenko§

June 12, 2019

Abstract

We introduce a planar beauty contest game where agents must simultaneously
guess two, endogenously determined variables, a and b. The system of equa-
tions determining the actual values of a and b is a coupled system; while the
realization of a depends on the average forecast for a, a, as in a standard beauty
contest game, the realization of b depends on both a and on the average forecast
for b, b. Our aim is to better understand the conditions under which agents
learn the steady state of such systems and whether the eigenvalues of the sys-
tem matter for the convergence or divergence of this learning process. We find
that agents are able to learn the steady state of the system when the eigen-
values are both less than 1 in absolute value (the sink property) or when the
steady state is saddlepath stable with the one root outside the unit circle being
negative. By contrast, when the steady state exhibits the source property (two
unstable roots) or is saddlepath stable with the one root outside the unit circle
being positive, subjects are unable to learn the steady state of the system. We
show that these results can be explained by either an adaptive learning model
or a mixed cognitive levels model, while other approaches, e.g., näıve or homo-
geneous level-k learning, do not consistently predict whether subjects converge
to or diverge away from the steady state.
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1 Introduction

The Keynesian Beauty Contest Game provides a simple and well-studied framework

for understanding the extent to which agents can learn to acquire rational expecta-

tions in a simple forecasting game. In the standard version of this game, each player i

in a group of N subjects is asked to guess some number, ai ∈ [0, 100]. Each player i’s

payoff depends on how close their guess is to some target number, a∗ = p× ā, where

ā =
∑N

i=1 ai/N denotes the average guess, and where N and 0 < p < 1 are known.

Since p < 1, the unique, dominance solvable Nash equilibrium prediction is for all to

guess 0, but this outcome is rarely observed. As Nagel (1995) and Stahl and Wilson

(1994, 1995) showed, subjects are heterogeneous with respect to the number of steps

of iterated elimination of dominated strategies that they apply to this problem. Many

subjects begin with some initial reference point for the average choice, a0; typically

a0 = 50, though others may choose a0 = p× 100. Given this initial choice, “level-1”

player types choose p× a0 as their guess. Slightly more sophisticated, “level-2” types

presume that all other participants are level-1 types who will guess p × a0 and so

these level-2 types best respond by choosing p× (p×a0) as their guess. Generalizing,

a “level-k” type guesses pk × a0. The experimental evidence suggests that there are

sizeable fractions of level-0, 1, 2, and level-∞ types; the latter types simply solve the

fixed point problem to compute the Nash equilibrium and submit a guess of 0.

In this paper we extend the Keynesian beauty contest to a second dimension. That

is, we introduce a “planar beauty contest” game where individuals are asked to form

guesses about two variables, and where both guesses may matter for the realization

of the target values subjects are incentivized to achieve. Thus, the dynamical system

describing how target numbers depend on the guesses is coupled. In pursuing this

exercise we have several aims. First, we seek to understand whether level-k reasoning

is a robust characterization of learning behavior when subjects face a two-dimensional

coupled dynamical system and may therefore have to expend more thought on the

proper solution to that system. In particular, the coupled nature of the problem may

cause subjects to think harder about finding the fixed point. Second, such dynamical

systems represent a workhorse, reduced-form framework for many models used by

economists (we provide two examples). Our planar beauty contest game approach

provides a similar reduced-form framework for understanding whether individuals

can learn the equilibria of such models that stands in contrast to the “learning-to-

forecast” experimental approach (Hommes, 2011). In the latter approach, agents are

asked to form forecasts in multivariate systems which are then fed into a dynamic
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general equilibrium model to produce realizations of the variables that subjects were

forecasting. However, in the learning-to-forecast approach subjects typically have

little or no knowledge as to how their forecast matters for the realization of those

variables, whereas in our approach, this process is clearly spelled out; the laws of

motion of the two variables of interest are perfectly known. Third, we are interested

in whether the eigenvalues of the two-dimensional system matter for whether subjects

achieve the steady state solution of the system, as well as the speed at which such

convergence may obtain. Finally, we are interested in exploring which, among several

different learning models found in the literature, can best explain our results. For this

purpose, we consider näıve learning, homogeneous level-k learning, adaptive learning

and mixed cognitive level learning models.

We consider four linear, planar environments, which comprise the four treatments

of our experiment. In all four environments, there is a unique interior Nash equilib-

rium of the planar system (aNE, bNE) that is held constant; the only changes made

are to the equations mapping individual guesses to the target values. Assuming a

simple näıve learning process under repeated play of the game, the equations govern

the evolution of the a and b variables over time with the interior Nash equilibrium

of the game corresponding to the steady state of that dynamical system. In the first

environment, both eigenvalues of the planar system are less than 1 in absolute value

so that the solution is, dynamically speaking, a “sink” with convergent paths from

any initial condition. In the second and third environments, one of the eigenvalues

is positive and less than 1 while the other eigenvalue is greater than 1 in absolute

value so that the solution displays the so called “saddlepath property.” Such dy-

namical systems are unstable; while there exists a unique converging path (i.e., a

one-dimensional set of initial conditions that would converge to the steady state),

there exist infinitely many other solution paths leading away from the steady state.

In the fourth environment, both of the eigenvalues are greater than 1 in absolute

value so that the system is dynamically unstable – a “source” – with no converging

paths.

Given these dynamical properties, we expected to observe convergence in the sink

environment and non-convergence in the source environment. The saddlepath envi-

ronment is particularly attractive to macroeconomists, since, by contrast with the

sink case, the reaction of the economy to shocks to fundamentals can be uniquely

determined only in this environment. Indeed, when the steady state has the sink

property, there are infinitely many paths by which the system can adjust following
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a perturbation. Within the saddlepath case, we consider two different environments.

In the “saddlepath negative” case the unstable eigenvalue (i.e., the eigenvalue greater

than 1 in absolute value) is negative, and in the “saddlepath positive case” the un-

stable eigenvalue is positive. As discussed below, there is some evidence that the sign

of the eigenvalue in stable univariate systems matters for convergence to the steady

state of such systems and we wanted to consider whether this property also extends

to multivariate (planar) systems.

To preview our results, we find that groups of 10 subjects with complete informa-

tion regarding the planar data generating process are able to learn the steady state

of such systems when the interior steady state exhibits the sink property or is sad-

dlepath negative. By contrast, when the steady state exhibits the source property

or is saddlepath positive, subjects are unable to coordinate on the interior steady

state solution of the system, and instead coordinate on a boundary solution to the

dynamical system; absent this boundary, they would simply diverge away form the

interior steady state. Our findings thus suggest that steady states exhibiting the

saddlepath property can be learned by agents who do not begin a process of social

interaction with rational expectations knowledge of the equilibrium, but that such

convergence is not a general property of saddlepath stable solutions. This finding

furthers our understanding of the empirical relevance of saddlepath stable solutions

in planar systems.

We also consider what types of learning models could predict the pattern of be-

havior that we observe across the four treatments of our experiment. We generalize

the level-k model of Nagel (1995), Stahl and Wilson (1994, 1995), Costa-Gomes et al.

(2001), and Costa-Gomes and Crawford (2006) and the cognitive hierarchy model of

Camerer et al. (2004) and Chong et al. (2016), to our dynamic, planar setting.1 Then

we compare the fit of the näıve learning, past averaging, adaptive and level-k mod-

els to our experimental data. Importantly we find that homogeneous level-k models

cannot consistently explain the behavior of subjects in some versions of our planar

beauty contest game. In particular, in the saddle negative treatment, the homoge-

neous level-k model predicts nonconvergence to the interior steady state while the

human subjects consistently converged to the steady state in this treatment. This

difference reveals the advantage of adding another dimension to the forecasting task,

as it allows us to more clearly assess the predictions of various learning models and

1For recent surveys of level-k and cognitive hierarchy models and applications, see Crawford et
al. (2013) and Mauersberger and Nagel (2018).
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to differentiate them from one another in terms of their fit to the data. By contrast,

we find that an adaptive learning model, can explain the convergence/divergence

outcomes observed in all four of our experimental planar beauty contest treatments.

Further we show how this adaptive learning model can be reinterpreted as a mixed

cognitive levels model. Finally, we show that a hybrid adaptive learning model, with

some weight assigned to the interior steady state equilibrium, fares the best across

all of the models that we consider according to the out-of-sample predictive mean

squared error.

The remainder of the paper is organized as follows. Section 2 introduces the

planar beauty contest game (PBC) and discusses related literature. We describe

our experimental design and implementation of the PBC game in Section 3 and we

qualitatively discuss experimental results in Section 4. Section 5 introduces a range

of behavioral models of individual play in the game and analyzes their theoretical

properties, comparing them to the experimental outcomes. In Section 6 we estimate

the models using the experimental data and identify the model that best fits the data

across all four treatments. Section 7 concludes. Appendices contain the experimental

instructions and additional information.

2 Planar Beauty Contest Game

The basic framework we study is a two-dimensional, coupled, self-referential affine

system where expectations of the two endogenous variables, a and b, matter for the

realizations of those variables in each period t = 1, 2, . . . , T . Specifically, we have in

mind linear (or linearized) economic models that can be put into the following form:(
at

bt

)
= M

(
aet
bet

)
+ d (1)

where aet and bet denote the expected time t value of the variables at and bt using all

information available through time t− 1 and the values of matrix

M =

(
m11 m12

m21 m22

)
and vector d =

(
d1

d2

)

are known to all agents. We implement this framework in the lab by asking 10

participants to play the planar beauty contest game for 15 consecutive periods. In
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this game, which is presented in Section 3, individuals are motivated to guess the

values at and bt determined as in (1) with the averages of the guesses used in place

of expectations.

Denote the 2× 2 identity matrix by I and assume that I−M is invertible. Under

rational expectations, where aet = at and bet = bt, system (1) has a unique steady

state given by (I−M)−1d. This steady state corresponds to the unique interior

Nash equilibrium of the planar beauty contest game.

There are a number of economic models that map into this basic framework. In

Appendix A we provide two examples, one from the industrial organization literature

and another from the macroeconomics literature on monetary policy. Unlike the

univariate case, in this coupled, two-dimensional planar system, expectations about

the realization of one variable can matter for realizations of the other variable, and

vice versa. A consequence of this interdependence is that the eigenvalues of the

matrix, M, can matter for the stability of the steady state of the system, and these

eigenvalue conditions are a main focus of our analysis.

Note that, in the interest of simplicity and consistent with the experimental beauty

contest literature, there are no explicit intertemporal dynamical linkages from one

period to the next in the setup that we study, that is, our basic framework is a static

one. However, learning agents who do not (or cannot) immediately solve for the

steady state of the system, will likely condition their expectations on the past history

of realizations, Ht = {as, bs}t−1s=1 in forming expectations for the time t values for at

and bt. For instance, if agents have näıve expectations, i.e., if aet = at−1 and bet = bt−1,

then system (1) is effectively a two-dimensional, coupled first-order dynamical system

of the form: (
at

bt

)
= M

(
at−1

bt−1

)
+ d.

Of course, agents may use a variety of different learning rules and we consider the

fit of a number of such rules in our analysis of the experimental data. We wish to

emphasize that the interdependencies of expectation formation in the two-dimensional

system that we study makes for a more challenging test of learning models which have

typically been used to examine behavior in univariate or un-coupled systems.2

2For examples of research where experimental data are used to evaluate and compare various
learning models in the univariate framework see Anufriev and Hommes (2012) and Anufriev et al.
(2019).
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2.1 Related literature

The original beauty contest game, as first explored experimentally by Nagel (1995)

and Stahl and Wilson (1995), can be viewed as a single equation system. As noted

earlier, the aim of the game is for each player i = 1, . . . , N to make a guess, ai, about

some target value, a∗ = pā, where ā is the average of all N players’ guesses and p < 1.

Each player’s guess, ai, is restricted to lie in the interval [0, 100]. In equilibrium, the

solution, aNE, must be the same for all players, namely, ai = aNE = paNE, so that

the steady state prediction is that ai = 0 for all i.

Subsequent experimental research by Güth et al. (2002), Sutan and Willinger

(2009) examines affine univariate systems where the target value, a∗ = pa + d, and

|p| < 1. This setup yields a non-corner or “interior” equilibrium solution, with

negative or positive feedback depending on the sign of p. The positive feedback

version has 0 < p < 1 and monotonic convergence to the equilibrium steady state,

aNE = d/(1− p), while the negative feedback version has −1 < p < 0 and oscillatory

convergence to the same steady state value. Positive (negative) feedback systems

are related to strategic substitutes (complements) as first noted by Haltiwanger and

Waldman (1985). Experimentally, univariate systems with negative feedback have

been found to more reliably converge to the steady state as compared with positive

feedback systems where convergence is slower or not observed over the time horizon

of the experiment – see, e.g., Fehr and Tyran (2008), Sutan and Willinger (2009),

Heemeijer et al. (2009) and Hommes (2013). This observed difference for univari-

ate and stable systems motivates our consideration of two different versions for the

saddle-path stable solution, one where the unstable eigenvalue is positive and one

where it is negative. As we will show, this distinction can also matter for whether

adaptive learning behavior converges to the steady state of multivariate (planar) cou-

pled systems.3

There is some experimental research that seeks to understand how human subjects

form expectations of two interrelated endogenous variables in a coupled dynamical

system, arising out of a reduced form of the “New Keynesian” model of monetary pol-

icy. See in particular, Adam (2007), Assenza et al. (2014), Pfajfar and Žakelj (2016)

3More recently, Benhabib et al. (2019) study affine univariate systems where the target value
a∗ = pa + di, under both negative and positive feedback (−1 < p < 1), and where di is a private
signal for each player i; in one of their treatments, di is a random draw from a mean zero distribution,
and in that case, subjects find it easy to play the equilibrium strategy of using their private signal
as their guess.
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among others. These studies consider specific parameterizations of a forward-looking,

first order planar system of the form xt = Mxet+1 + d and they consider the extent

to which human subjects can learn to form forecasts in a manner that is consistent

with the rational expectations equilibrium predictions (Adam, 2007) and/or whether

monetary policy rules can move the system from an indeterminate (unstable) steady

state to a determinate (locally stable) one (Assenza et al., 2014, Pfajfar and Žakelj,

2016). Our paper is related to this work in that we consider how the eigenvalues of

the system matter for whether agents can learn the steady state. However, we are

not interested in considering a specific model (e.g., the New Keynesian model); rather

we are interested in how the properties of planar dynamical systems impact on the

learning of equilibrium. Toward that end, we do not have an explicitly dynamical

framework, though as noted above, if agents are adaptive learners, that adaptation

process makes our system dynamical. Unlike the New Keynesian model experiments,

which do not provide subjects with much information about the data generating pro-

cess and simply ask subjects to forecast inflation and the output gap, we provide

our subjects with full information about the data generating process for the two en-

dogenous variables, i.e., they know both the matrix M and the vector d, just as in

the beauty contest experimental literature.4 Further, we vary the stability of the

system we study by changing the parameterization of the system in such a way that

the steady state does not change across all of our different experimental treatments;

this makes the analysis of convergence/divergence under different stability conditions

much clearer.

There is some theoretical work exploring whether saddle-path stable solutions can

be learned under adaptive learning dynamics, e.g., Evans and Honkapohja (2001),

Ellison and Pearlman (2011). This work shows that steady state solutions with the

saddlepath property can be learned under certain conditions, specifically, if agents

have forecast rules of the same form as the equilibrium saddle-path relationship be-

tween the two variables. By contrast, in this paper, we do not endow subjects with

such knowledge, though as noted, we do present them with the data generating equa-

tions of the system. Further, we show via simulations that simple adaptive learning

dynamics, initialized according to an uninformative prior belief that the means of the

two variables, a and b, will begin at the midpoint of the guessing interval, closely

track the behavior of the subjects in our experiment.

4Thus our design enables subjects to immediately solve or “educe” the steady state of the model,
though they must also consider the strategic uncertainty they face regarding the expectations formed
by other subjects as explained below. Bao and Duffy (2016) also study learning under complete
information but for a univariate negative feedback system.
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3 Experimental design

An experimental session consists of a group of N individuals who participate in T

repetitions of the planar beauty contest game. In each period, each player i submits

a pair of numbers, (ai, bi). On the basis of these “guesses”, the group averages

ā =
1

N

N∑
i=1

ai and b̄ =
1

N

N∑
i=1

bi

are computed. Finally, the “target” values a∗ and b∗ are defined as(
a∗

b∗

)
= M

(
ā

b̄

)
+ d =

(
m11 m12

m21 m22

)(
ā

b̄

)
+

(
d1

d2

)
, (2)

where the 2×2 matrix M and 2×1 vector d depend on the treatment and are known

to all participants. The payoff to participant i in each period is given by

πi =
500

5 + |ai − a∗|+ |bi − b∗|
(3)

points. Thus, participants are motivated to submit their guesses as close as possible

to the target values. Guessing both targets exactly would bring a maximum reward

of 100 points. Note that deviations from the target values decrease the participant’s

payoffs by an equal amount.5

Assuming that the matrix I−M is invertible (which will be the case in all of our

treatments), the one-shot game described above has a unique Nash equilibrium. In

this equilibrium every participant submits the guesses given by(
aNE

bNE

)
= (I−M)−1d . (4)

Indeed, it can be directly checked that with this profile, both targets a∗ and b∗

coincide with the corresponding guesses, leading to the maximum possible payoff for

every participant i.

In this paper we study the behavior of experimental subjects in 4 treatments with

5The hyperbolic function in (3) penalizes strongly the smallest deviations from the target, giving
participants stronger incentives to guess the targets precisely. This hyperbolic payoff function has
been used in Adam (2007) and Assenza et al. (2014) for one dimensional decisions.
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different matrices M and vectors d. We construct all treatments so that the interior

Nash equilibrium (4) is the same across treatments, with aNE = 90, bNE = 20. As is

typical in beauty contest experiments, we restrict the range of guesses submitted by

the participants. That is we inform participants that both ai and bi must belong to

the interval [0, 100].6

We are particularly interested in how changes to the matrix M affect the outcome

of play. Our four treatments differ in the location of the eigenvalues of M. In all

of our treatments, matrix M is lower triangular, with m12 = 0 in (2), and thus the

eigenvalues of M are the diagonal elements. Further, in three of our four treatments,

we set m11 = 2/3; this parameter choice is one that is commonly used in the univariate

beauty contest game; indeed the first equation of our coupled system can be thought

of as a version of the classic, 2/3 of the average, beauty contest game, (albeit with

an interior solution).7 We now describe our four treatments.

Sink. In this treatment

M =

(
2/3 0

−1/2 −1/2

)
and d =

(
30

75

)
.

Both eigenvalues of M, 2/3 and −1/2, are inside the unit circle. The guessing game

with this matrix and restriction of the strategy space to [0, 100]× [0, 100] has a unique

Nash equilibrium of (90, 20).

SaddleNeg. In this “saddle with negative feedback” treatment

M =

(
2/3 0

−1/2 −3/2

)
and d =

(
30

95

)
.

The matrix M has eigenvalues 2/3 and −3/2. This is the saddle case for dynamical

systems, because one of the eigenvalues is inside and another is outside of the unit

circle. The unstable eigenvalue is negative and it introduces strategic substitutability

6Depending on the treatment, this restriction may lead to other, non-internal, or boundary
equilibria of the game, as explained below; see Appendix B for formal proofs. However, in all cases
the internal equilibrium (90, 20) will be the payoff-dominating equilibrium. It is also the only rational
expectations equilibrium (REE), when we use the game as a representation of model (1).

7We chose a lower triangular matrix for M to make our system coupled, but, at the same time,
simple enough that subjects could possibly solve for the steady state.
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or “negative feedback” to the b-number strategy: higher guesses imply a lower target.

The guessing game with this matrix and the strategy space [0, 100] × [0, 100] has a

unique Nash equilibrium of (90, 20) as in the Sink treatment.

SaddlePos. In this “saddle with positive feedback” treatment

M =

(
2/3 0

−1/2 3/2

)
and d =

(
30

35

)
.

The matrix M has eigenvalues 2/3 and 3/2. As in the SaddleNeg treatment, the

first eigenvalue is inside and the second is outside of the unit circle. The eigenvalues

in these two saddle treatments have the same absolute values. However, now the

unstable eigenvalue is positive leading to strategic complementarity or “positive feed-

back” to the b-number strategy: higher guesses imply a larger target. The guessing

game with this matrix and the strategy space [0, 100]× [0, 100] has an internal Nash

equilibrium of (90, 20) as well as two other boundary Nash equilibria, (90, 0) and

(90, 100). We stress that (90, 20) is the only REE, and therefore it payoff-dominates

other equilibria.

Source. In this treatment

M =

(
3/2 0

−1/2 −3/2

)
and d =

(
−45

95

)
.

Both eigenvalues of M, 3/2 and −3/2, are outside of the unit circle. Apart from the

unique REE (90, 20) the guessing game on the strategy space [0, 100] × [0, 100] has

two other boundary Nash equilibria: (0, 38) and (100, 18).

In all sessions we asked a group of N = 10 participants to play the same game

for T = 15 consecutive periods. In each period, participants were incentivized to

independently choose their two numbers to be as close as possible to the target values

via the payoff function (3). We will use the subscript t for the time period, and

so we denote the submitted guesses of player i in period t by ai,t and bi,t and the

realized period target values as a∗t and b∗t . Thus in the experiment, the target values
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for periods t = 1, . . . , 15 were determined as(
a∗t
b∗t

)
= M

(
āt

b̄t

)
+ d , (5)

where āt = 1
10

∑10
i=1 ai,t, b̄t = 1

10

∑10
i=1 bi,t and where matrix M and vector d were held

fixed over all 15 periods of the treatment and were known to all 10 participants.

The experimental sessions were conducted in the Experimental Social Science

Laboratory at the University of California, Irvine. We conducted four sessions each

of the four treatments. Since each session involved 10 inexperienced subjects, we

report data from 4 × 4 × 10 = 160 subjects. The subjects were all undergraduate

students at the University of California, Irvine.

At the start of each session the Instructions (see Appendix C) were read loud and

the procedure by which the target numbers were determined was carefully explained

to subjects. We also projected the equations determining the two target values on

a screen for all subjects to see. After the instructions were read, subjects had to

successfully answer several control questions before they were able to move on to the

main experiment. At the end of the experiment subjects completed a brief survey.

The experiment was computerized using the zTree software, see Fischbacher (2007).

In every period, the upper part of the main decision screen reminded subjects how

the target values a∗ and b∗ were determined on the basis of their choices (i.e., system

(2) was presented, though in a simple, non-matrix way). In the middle part of their

screen, subjects entered their pair of numbers for the given period, one “a-number”

and one “b-number”. Subjects could also click on an icon to get access to an online

calculator.

After all subjects submitted their guesses, the computer program calculated the

average of all 10 submitted a-numbers and all 10 submitted b-numbers, and deter-

mined the target values for the period (according to the treatment conditions for the

matrix M and vector d). Given the target values, subjects’ payoffs in points were

determined according to the payoff function (3). Each period ended with a second

results screen reminding subjects of their submitted pair of numbers, and inform-

ing them of the group average values for the two numbers, ā and b̄, the two target

numbers (based on the period averages), a∗ and b∗, and the points that the subject

earned for the period. Except for the very first period, subjects could see a history of
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Treatment Parameters REE Other NE Eigenvalues

Sink M =

(
2/3 0
−1/2 −1/2

)
, d =

(
30
75

) (
90
20

)
-

2

3
, −1

2

SaddleNeg M =

(
2/3 0
−1/2 −3/2

)
, d =

(
30
95

) (
90
20

)
-

2

3
, −3

2

SaddlePos M =

(
2/3 0
−1/2 3/2

)
, d =

(
30
35

) (
90
20

) (
90
0

)
,

(
90
100

)
2

3
,

3

2

Source M =

(
3/2 0
−1/2 −3/2

)
, d =

(
−45
95

) (
90
20

) (
0
38

)
,

(
100
18

)
3

2
, −3

2

Table 1: Characteristics of the Four Experimental Treatments.

all previous outcomes in the lower part of the main decision screen for each period.

This table showed, for each past period, their chosen numbers, the averages for both

numbers, the computed target values, and the points they earned for those periods

according to the payoff function (3). Subjects’ total point earnings, from all 15 peri-

ods of a session, were converted into dollars at the fixed and known rate of 100 points

= $1. Thus, subjects could earn a maximum of $15 from their guesses. In addition,

subjects were given a $7 show-up payment for a total maximum of $22. Actual total

earnings (including the show-up payment) varied with the treatment but averaged

$12 across all four treatments for an approximately 75 minute experiment.

Table 1 provides a summary of the four treatment conditions.

4 Results

In this section we have a first look at the data and analyze them qualitatively. We

begin in Section 4.1 by discussing individual choices in the first period. Then in Sec-

tion 4.2 we look at the dynamics of the choices over all 15 periods of the experiment.

4.1 Choices in the first period

In the first period of our experiment the participants had the same information as in

the standard, one-shot beauty contest game. Specifically, since the first equation is

decoupled from the second, guessing the a-number is exactly equivalent to playing the

standard game with the target given by m11ā+ d1. Moreover three of our treatments
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(except for the Source) have an identical equation for the a-number, with target

given by (2/3)ā + 30. In the Source treatment, the target for the a-number is

(3/2)ā − 45. Figure 1 presents histograms of individual guesses for the a-number

in period 1. The left panel combines all groups from treatments Sink, SaddleNeg

and SaddlePos, and the right panel shows the histogram for the Source treatment.

We observe that first period guesses are heterogeneous with a large spike around the

middle of the guessing interval, 50. The remaining choices are concentrated in the

right half of the interval for treatments Sink, SaddleNeg and SaddlePos, and they

are concentrated in the left half of the interval for treatment Source. Only a few

participants submitted the interior Nash Equilibrium quantity for the a-number, 90,

represented by the thick vertical line.

A standard approach for classifying choices in this game employs level-k reason-

ing. According to this classification (see, e.g., Nagel, 1995), level-0 subjects submit

guesses distributed uniformly over the guessing interval [0, 100], having a mean of

(0 + 100)/2 = 50.8 Subjects of level-1 best respond to this level-0 behavior and

submit m1150 + d1. Subjects of level-2 best respond to level-1 choices, and so on.

When the best responses fall outside of the interval of strategies [0, 100], they are

truncated to the closest boundary. To illustrate this approach, we superimpose on

the histograms shown in Figure 1 four vertical lines, corresponding to the levels of

0, 1, 2 and 3 (the legend specifies the corresponding values for these different levels).

Note that in the treatments with m11 = 2/3, the sequence of levels monotonically

increases and converges to aNE = 90 in an infinite number of steps. Instead, in the

case of the Source treatment, when m11 = 3/2 the sequence of level-k choices quickly

decreases to 0 and stays there for any k ≥ 2. As discussed above, this is one of the

payoff-dominated boundary Nash equilibrium of our game with a bounded guessing

interval.9

The target for the b-number is affected by the average guesses for both numbers,

making this guessing task more difficult. The four panels in Figure 2 show histograms

of b-number choices in the four different treatments, with a thick vertical line indicat-

ing the interior Nash equilibrium choice for b of 20. As in the case of the a-numbers,

there is a large heterogeneity in guesses, with spikes around 50 in all treatments, and

8An alternative specification for level-0 types has them guessing d+m11×100, the upper bound
of the guessing interval. The level-0 type is more often thought of as an agent’s model of others,
rather than the guess made by actual person.

9If the average a-guess in the Source treatment is 0, the target will be −45. The closest possible
guess to this target, i.e., the best response, is ai = 0.
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Figure 1: Frequencies of Period 1 a-choices and levels of reasoning (different dashed lines)
and internal Nash Equilibrium (red line). Left: combined choices from Sink, SaddleNeg
and SaddlePos treatments. Right: Source treatment.

skewness of the remaining choices to the left, except for the SaddlePos treatment

where there are also many choices are to the right of the mid-point of the guessing

interval.10

To systematize these choices, we extend the level-k theory to the second dimension.

As before, the subjects with level-zero are assumed to submit guesses distributed

uniformly over the interval [0, 100] with a mean of (0 + 100)/2 = 50. However, to

further define levels for the b-number we must make assumptions about levels of

rationality employed for both the a and b numbers. We will make the following “lock-

step” assumption, that subjects at level k play a best response to others at the same

level k − 1 for both the a and b numbers. This means that subjects of level 1 best

respond to a choice of 50 for both the a and b numbers and thus submit for their

b-number guess m2150+m2250+d2; subjects of level 2 best respond to level-1 guesses

for both a and b numbers, and so on. When the levels are outside [0, 100] interval,

the numbers are truncated to the closest boundary.

The step levels for the b-numbers following this procedure are shown by the vertical

lines in the four panels of Figure 2 (the precise levels are again indicated in the legend).

Notice that in the Sink case, the levels oscillate and converge to 20. Oscillations make

it difficult to identify the actual levels played by subjects, but we do observe spikes

around level-1 and level-2 predictions in first period choices. In the SaddleNeg

treatment the level-1 choice is 0 (after truncation), where we also see a spike in our

10On the other hand, in the SaddlePos treatment we have more choices concentrated around the
equilibrium value of 20.
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Figure 2: Frequencies of Period 1 b-choices and levels of reasoning (different dashed lines)
and internal Nash Equilibrium (red line) for four treatments.

data. The level-2 choice is above 50, and the level-3 choice is 0 again, and so on.11

In the SaddlePos treatment the levels increase monotonically to 100, whereas in

the Source treatment, similarly to SaddleNeg, the odd levels’ choice is 0 and the

process converges via oscillations to a two-cycle between 0 and 95.

Comparing this level-k model with the data of b-choices we conclude that the

presence of a coupled variable in the Beauty Contest game leads to even further

decrease in the level of rationality for the b-number.12

The upper part of Table 2 shows the mean, median and standard deviations for

choices of variables a and b in the first period. Note that an amount of heterogeneity

11This process will converge to a two-cycle between 0 and 50.
12In other words, the aggregate data suggest that participants may have different levels of ratio-

nality in their a and b choices. Fig. 6 in the Online Appendix F illustrates this at the individual
level.
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Treatment
First period a-number First period b-number

Mean a1 Median a1 Std.Dev a1 Mean b1 Median b1 Std.Dev b1

Sink 57.39 60.00 17.67 34.98 30.00 20.01
SaddleNeg 55.01 56.01 22.28 31.06 29.00 21.46
SaddlePos 56.25 58.80 20.50 42.97 46.75 23.18
Source 44.78 45.75 20.97 40.92 45.00 23.21

Treatment
Last period a-number Last period b-number

Mean a15 Median a15 Std.Dev a15 Mean b15 Median b15 Std.Dev b15

Sink 84.21 86.85 14.40 25.40 21.48 17.44
SaddleNeg 89.81 89.92 0.55 20.31 20.00 1.49
SaddlePos 87.33 88.00 3.06 92.31 100.00 24.94
Source 7.47 0.00 13.49 35.57 35.00 6.03

Table 2: Aggregate statistics of guesses per treatment for the first and the last period
of the experiment in different treatments.

(as measured by the standard deviations) is similar in all treatments. Both means and

medians in all cases are substantially different from the middle point 50. Sometimes

these statistics are shifted toward the internal Nash equilibrium, sometimes not, but

in seven out of eight instances the direction of such shift is consistent with the level-1

choice.13

4.2 Dynamics

We next discuss the dynamics of guesses over all periods in the experiment. The

lower part of Table 2 reports the mean, median and standard deviations for a and b

choices in the last period. Comparing these with the first period choices in the top

panel, we see that the heterogeneity in individual choices is reduced over time in all

cases, except for the b-number in SaddlePos. Most importantly, with experience,

the median and mean number choices for both a and b are very close to the internal

Nash equilibrium in the Sink and SaddleNeg treatments and this also holds for

the a-number in the SaddlePos treatment. In all other cases there is a substantial

difference between the final period number choices and the corresponding values in

the internal Nash equilibrium.

These results are confirmed when we look at the four panels of Fig. 3 showing

13The only exception is the first period b choices in the SaddlePos treatment, where the level-1
choice is 85 but most of the guesses are to the left of the middle point.
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typical examples of the evolution of the averages, ā and b̄, for all four treatments, Sink,

SaddleNeg, SaddlePos, Source from one representative session of each treatment

(we chose session 3 of all four treatments). The time evolution of ā (the thick red line)

and of b̄ (the thin blue line) are graphed in relation to the dashed lines indicating the

levels of the internal Nash equilibrium, aNE = 90 and bNE = 20, in all four cases.14

We observe that the dynamics of a-number converges to its equilibrium value of 90

in the first three treatments, i.e., in the Sink and in both Saddle treatments, but

does not converge in the Source treatment. The fact that the dynamics are rather

similar in the first three treatments is not surprising, because the equations governing

an evolution of the a-number is the same in these treatments. The average submitted

values start around a point close to 55, which results in the targeted value being close

to 67. Then both averages and targets start to increase and eventually converge (from

below) to the equilibrium level. The dynamics in the Source treatment, however,

are very different. The average submitted value in the first period is again not far

from the middle of the submission range, but that choice now results in the target

value being close to 30. Then, both the average and target values decrease so that

eventually the target value becomes negative.

The dynamics of the b-number are different in all four treatments. Importantly,

both in the Sink and in the SaddleNeg treatments the dynamics converge to the

equilibrium value, bNE = 20. In the SaddleNeg treatment the convergence is through

initial oscillations, whereas in the Sink treatment the convergence is rather monotone.

In both cases, convergence is very quick so that the variable reaches the equilibrium

value by around period 10 (later on, we address criteria for evaluating convergence).

On the contrary, in the SaddlePos and Source treatments, the b-number does not

converge to the internal Nash equilibrium value and displays quite peculiar dynamics.

In both treatments, the initial b-number average is close to 40. Then, in the Saddle-

Pos treatment, this variable quickly increases and stays close to the boundary value

of 100 until the end of the experiment. In the Source treatment the dynamics is

rather stable from the very beginning of the experiment. Moreover the average of the

submitted b-numbers in this treatment is already very close to the equilibrium value

of 20 in periods t = 3 and 5. Afterwards, however, this variable deviates and stays in

an increasingly tighter range between 30 and 40 until the end of the experiment.

14Overall, the dynamics in the four sessions of each of the four treatments are very similar to those
of session 3 as depicted in Fig. 3. See Figs. 7 to 10 in the Appendix F where we show the dynamics
of the average guesses for each session individually. Figs. 11 to 14 in the Online Appendix F show
the dynamics of the target values, a∗ and b∗ for each session as well.
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Figure 3: Typical dynamics of the average values, ā and b̄, observed in four different
treatments of the experiment. The dashed lines indicate the levels of internal equilibria
which are the same across all treatments.

Whereas the dynamics converged in both Sink and SaddleNeg treatments, there

is a difference in the speed of convergence. We illustrate this difference in Table 3 by

comparing the “first hit time”, i.e., the first instance when the trajectories for the

average a and b numbers enter some ε-neighborhood of the equilibrium, in each of

the four sessions of the Sink and SaddleNeg treatments. Let us fix ε > 0 and define

the neighborhood as an open square around the equilibrium value,

Uε =
{

(a, b) : |a− aNE| < ε and |b− bNE| < ε
}
.

Let t(ε) denote the period when the trajectory for the average values of the a and b

numbers belongs to the ε-neighborhood of the equilibrium for the first time. Formally,

t(ε) is such that (āt(ε), b̄t(ε)) ∈ Uε and (āt, b̄t) /∈ Uε for any t < t(ε). Table 3 shows

the first periods defined in this way for all sessions of the Sink and SaddleNeg

treatments15 for five different values of ε. Those cases when the trajectory never

reached the neighborhood during the experiment are denoted by the hyphen.

15In the four sessions of SaddlePos and Source treatments, the trajectories for the average a
and b numbers never entered the Uε neighborhoods for ε ≤ 20.
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Sink SaddleNeg
ε Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess. 1 Sess. 2 Sess. 3 Sess. 4

20 5 8 4 4 5 2 4 3
10 7 11 6 11 9 5 5 5
5 8 - 8 - 11 6 8 7
1 10 - 14 - - 12 12 9

0.5 10 - - - - 14 13 9

Table 3: The first period when trajectory enters the ε-neighborhood of equilibrium
in the experiment.

Table 3 suggests that the quickest convergence was in the SaddleNeg treatment.

Indeed, for any ε, the values of the first hit times over 4 sessions are smaller for

this treatment than for Sink. For instance, two sessions in Sink did not converged

to the 5-neighborhood of equilibrium in 15 periods, whereas in all four sessions of

the SaddleNeg treatment such convergence occurred (in 8 periods in average). The

only session of the Sink treatment where dynamics converged to 0.5-neighborhood

was still exhibited slower convergence than session 4 of the SaddleNeg treatment,

where in three sessions convergence to this neighborhood occurred.16

We summarize the results of the experiment as follows:

1. The dynamics converge to the internal Nash equilibrium in the Sink and Sad-

dleNeg treatments and do not converge to that equilibrium in the SaddlePos

and Source treatments. Convergence is quickest in the SaddleNeg treatment.

2. The a-number converges to its internal Nash equilibrium value almost mono-

tonically in the Sink, SaddleNeg and SaddlePos treatments. Convergence is

quickest in SaddleNeg treatment and the slowest in SaddlePos.17

3. The b-number converges to its interior Nash equilibrium value almost mono-

tonically in the Sink treatment and via an oscillatory path in the SaddleNeg

16As sometimes trajectory would exit the ε-neighborhood, we also compared the latest periods
when the trajectory did not belong to the ε-neighborhood of the equilibrium. The conclusions were
similar: the trajectories in the Sink treatment would stay around equilibrium for the shorter time
than in the SaddleNeg treatment. See Appendix D.

17This conclusion follows from applying the “first hit time” convergence criterion to the trajectory
of a-number only, see the details in Appendix D. Note that convergence is slowest in SaddlePos
despite the fact that in this treatment the first period value of the a-number was the closest to the
interior equilibrium value for a. As the a-variable is subject to the same one-dimensional Beauty
Contest Game in all three treatments, we can conclude that the dynamics of the irrelevant b-variable
affect the speed of convergence of a-number to its equilibrium value in those three treatments.
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treatment.

4. The b-number does not converge to its internal equilibrium value in SaddlePos

and Source treatments. In both cases, however, the dynamics are rather stable,

near some constant level.18

The most remarkable finding of the experiment is the contrast in dynamics be-

tween two saddle treatments. Participants are able to learn a steady state with

the saddlepath property under negative feedback, as in our SaddleNeg treatment,

quickly converging to the internal Nash equilibrium. Participants are not able to

learn a steady state with the saddlepath property under positive feedback, as in our

SaddlePos treatment, converging instead to another, payoff-dominated, boundary

Nash equilibrium. The outcome in these two saddle treatments are different, despite

the fact that these treatments differ only in the sign of the target for b-number as

dependent on the average of the b-guesses.

The notable differences in behavior between treatments translate into differences

in subjects’ payoffs. Table 4 shows the average payoffs per experimental session (in

points).19 We show the averages and the standard deviations of the total payoff

earned over all 15 periods of experiments and compare payoffs earned in the first and

last periods. As can be expected, the largest total payoffs are consistently achieved

in Sink and SaddleNeg treatments where the dynamics converged. The payoffs in

SaddlePos and Source treatments are much lower. When we look at how payoffs

changed during the experiment, we observe that the initial payoffs did not improve

in the SaddlePos and Source treatments. In two other treatments, the payoffs

improved. Interestingly, the initial payoffs in the Sink treatment were almost twice

as large as in the SaddleNeg treatment, indicating that the one shot game was much

easier in the Sink treatment than in the SaddleNeg treatment (as well as in all other

treatments). However, the quicker convergence in the SaddleNeg treatment allowed

subjects to earn the largest total payoff across all four treatments.

18Analysis of the boundary equilibria as reported in Table 1 reveals that in the SaddlePos
treatment, the dynamics converge to a neighborhood of the boundary Nash equilibrium (90, 100)
and in the Source treatment the dynamics converge to a neighborhood of the boundardy equilib-
rium (0, 38). Recall that these equilibria are payoff-dominated and neither of them is the rational
expectation equilibrium.

19One point corresponded to 1 US cent in the experiment. Recall from Eq. (3) that the maximum
payoff per period was equal to 100 points, and that even small deviations in predictions from target
values were costly. For instance, a prediction error of 1 for only one of the two targets reduces the
maximum possible payoff for the round to 83.3 cents, see the payoff Table presented to subjects in
the instructions, Appendix C.
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Treatment Session Periods 1–15 Period 1 Period 15
Ave Std.Dev Ave Std.Dev Ave Std.Dev

Sink

Sess. 1 923.43 95.64 23.38 12.84 92.68 4.28
Sess. 2 549.32 171.95 16.97 12.79 35.70 13.39
Sess. 3 734.63 111.98 23.33 14.46 41.55 13.79
Sess. 4 758.11 173.62 24.38 17.07 62.05 16.81

Average 741.37 138.30 22.02 14.29 58.00 12.07

SaddleNeg

Sess. 1 581.20 72.67 14.18 8.54 61.39 12.74
Sess. 2 888.13 89.05 11.69 6.98 92.59 3.45
Sess. 3 791.62 77.39 17.02 21.24 95.06 3.51
Sess. 4 892.81 94.30 13.40 3.92 93.32 4.80

Average 788.44 83.35 14.07 10.17 85.59 6.12

SaddlePos

Sess. 1 189.63 58.73 10.85 5.05 13.19 3.51
Sess. 2 210.00 49.44 14.40 12.33 21.16 9.88
Sess. 3 165.70 31.43 15.98 17.48 10.70 0.27
Sess. 4 168.94 20.26 10.86 2.77 10.80 0.28

Average 183.57 39.96 13.02 9.41 13.96 3.48

Source

Sess. 1 160.09 35.70 15.65 22.24 9.04 1.08
Sess. 2 162.27 35.86 6.11 2.11 11.88 3.58
Sess. 3 150.24 38.00 9.56 2.05 11.21 3.25
Sess. 4 162.51 34.17 11.06 3.90 9.39 1.38

Average 158.78 35.93 10.59 7.58 10.38 2.32

Table 4: Payoff statistics for each session of the corresponding treatment: average
per subject and standard deviation between subjects

Finally, we illustrate the dynamics of individual guesses for all four treatments in

Figure 4. Each of 8 panels shows the cumulative frequencies of individual choices in

periods t = 1 (magenta thick line), t = 5 (blue dotted line), t = 10 (green thin line),

and t = 15 (black dashed line) for both guesses: the a-number guesses are shown

in the top panels and the correspoding b-number guesses are shown in the bottom

panels. The steady state values are indicated by the vertical red line. Notice that the

variance of individual choices decreases over time, with the greatest reduction occuring

during the first 5 periods. In the Sink and SaddleNeg treatments, individual choices

converge to the steady state and stay relatively close to each other. In SaddlePos

and Source treatments subjects’ choices are more dispersed even in the last period

of the experiment.20

20Note that in the SaddlePos treatment many subjects submit a b-number guess of 100, but
some submit a guess of 0 for the b-number.
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Figure 4: Cumulative frequencies of individual choices in periods 1, 5, 10 and 15 for Sink,
SaddleNeg, SaddlePos, and Source treatments (from left to right) for a-number (upper
panels) and b-number (lower panels). Vertical line indicates internal NE.

5 Behavioral Models

As we have seen, the ability of participants to converge to the internal Nash equilib-

rium and achieve the highest possible payoff depends on the treatment. In this section

and the next, we address two important questions: Can a single model of behavior

explain the observed differences across our four treatments? If so, which model does

provide the best fit to our data?

In this section we will present several dynamic models and discuss their qualitative

dynamics to see whether they can match the dynamics of average guesses in the

experimental data. Specifically, we focus on the simulated path of 15 periods for

each model. This path may depend on initial conditions and parameters, but it does

not use any information from the experimental data.21 We start with the simplest

näıve learning model. Generalizing this model in different directions, we will discuss

homogeneous level-k, adaptive, average, and cognitive hierarchy models.

21Later, in Section 6 we fit the models to the experimental data using quantitative measures. For
that exercise we use the experimental data to “inform” the models at each time step about the most
recent (aggregate) data that were available to the participants.
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5.1 Näıve Model

One of the simplest models is the so-called näıve model, where all participants’

guesses, and thus the average guesses are set equal to the previous period’s target

values: (
āt

b̄t

)
≡

(
a∗t−1
b∗t−1

)
. (6)

Using (5), we can write the näıve model as two-dimensional dynamical system in

terms of variables {ā, b̄}: (
āt

b̄t

)
= M

(
āt−1

b̄t−1

)
+ d . (7)

This system has a unique steady state given by the internal Nash equilibrium of

the game. The näıve model is linear and, therefore, its dynamic properties can be

understood from the eigensystem of matrix M, see Table 5. The steady state stability

depends on the eigenvalues of matrix M. Since in all four treatments, the matrix M

is triangular, the eigenvalues of this dynamical system, µ1 and µ2, are the diagonal

elements of M that we denoted as m11 and m22. The corresponding eigenvectors, v1

and v2, are also reported in Table 5 to provide more information about the dynamics.

Note that in all treatments, the eigenvector v2 is the same, and is given by the vertical

line.22

We remind the reader of some basic facts about dynamical systems. When an

initial point of trajectory is exactly on the eigenvector of a linear system, the trajec-

tory will stay on this vector forever. If µ denotes the corresponding eigenvalue, the

trajectories move along the eigenvector by a factor µ per period with respect to the

steady state. It follows that when |µ| > 1, the trajectories starting on the eigenvector

will diverge from the steady-state. Instead, when |µ| < 1, the trajectories starting

on the eigenvector will converge. When 0 < µ < 1, the trajectories converge mono-

tonically, and when −1 < µ < 0, trajectories converge by “jumping” through the

steady state. Convergence is quicker when |µ| is small. Our system has two different

eigenvectors, v1 and v2, that form a basis in R2. The dynamics of any trajectory

can be most easily understood when represented in this basis. It follows that, the

dynamical system, intialized at any feasible point, will only converge (is globally sta-

ble) when both eigenvalues are less than 1 in absolute value. Generally, the speed of

22This is a simple consequence of the fact that the dynamics for the a-number are independent
of the b-guesses in all of our treatments (i.e., matrix M is lower triangular).

25



Treatment
Eigen System Converges? Attractor in Simulations
µ1, v1 µ2, v2 for a for b (a, b)

Sink
2

3
,

(
−7
3

)
−1

2
,

(
0
1

)
Yes Yes (90, 20)

SaddleNeg
2

3
,

(
−13

3

)
−3

2
,

(
0
1

)
Yes No 2-cycle {(90, 0), (90, 50)}

SaddlePos
2

3
,

(
5
3

)
3

2
,

(
0
1

)
Yes No (90, 100) or (90, 0) depending on init cond’s

Source
3

2
,

(
−6
1

)
−3

2
,

(
0
1

)
No No {(0, 0), (0, 95)} or {(100, 0), (100, 45)}

Table 5: Properties of the näıve model. This table shows the eigensystem (two
eigenvalues, µ1 and µ2, and their corresponding eigenvectors, v1 and v2). It also
shows the predictions of the model in terms of convergence for a generic initial point.
The last column shows the attractor for simulations using truncation of guesses at
boundary points as in (8).

convergence is determined by the slowest dimension, i.e., by the largest (in absolute

value) eigenvalue of the system.

The dynamics of the näıve model for four treatments are illustrated in the left

panels of Fig. 5. The two straight lines represent the two eigenvectors intersecting

at the steady state (90,20). The arrows indicate the directions of trajectories along

these vectors, whether they converge to or diverge from the steady state. The four

left panels show the first 15 periods of trajectories generated by (7) for each of the

four treatments. The trajectory in each treatment starts at the same initial point as

in the first experimental session for this treatment.23 To illustrate how qualitatively

similar dynamics of the näıve model are to the experimental dynamics, the middle

panels of Fig. 5 show trajectories of average guesses in a representative experimental

session (session number 1) of the same treatment.

From the second column of Table 5 we observe that in the Sink treatment, both

eigenvalues are inside the unit circle and therefore the dynamics is globally stable.

Indeed, both eigenvectors in the top left panel of Fig. 5 show convergence. Note that

the trajectory of the näıve model jumps around the eigenvector v1, this is because

the second eigenvalue is −1/2, i.e, negative. It is remarkable that the trajectory in

the experimental session (middle panel) is also “jumping” along the dimension of

b-numbers. It seems that the “näıve” model captures this dynamic feature quite well.

Convergence of the model is slower in the direction of a-number: this is because the

23In Online Appendix G we illustrate the dynamics of the näıve model in all four treatments for
the initial condition (50, 50), i.e., assuming that all subjects are level-0 in period 1.
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Figure 5: Dynamics of averages in an experimental group (middle panels) as compared
with the dynamics of näıve model (7) (left panels) and adaptive model (12) with
λ = 0.75 (right panels). For both learning models the first 15 periods are simulated
with the same initial point as in the experimental group. The two blue lines are the
eigenvectors with the arrows indicating whether the direction is stable or not.
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corresponding eigenvalue is 2/3 > |−1/2|; this larger eigenvalue effectively determines

the speed of convergence.

In the SaddleNeg and SaddlePos treatments, one of the eigenvalues is outside of

the unit circle, see Table 5. Therefore, the steady state is locally unstable. However,

since another eigenvalue is inside the unit circle, there is one stable direction. This

direction corresponds to the dynamics for the a-number. Thus a-numbers converge in

the model, but b-numbers do not converge generically, i.e., unless the initial point is

exactly on the stable eigenvector v1. The left panels of the second and third rows of

Fig. 5 illustrate the dynamics of the näıve model in the two saddle treatments. When

simulating this model (as well as any other model later on) we take into account

the fact that in the experiment the submitted guesses could not be outside of the

interval [0, 100]. Therefore, in our simulations we modify (6) and simulate, instead,

the following dynamics

āt = max
{

0,min
{

100, a∗t−1
}}

and b̄t = max
{

0,min
{

100, b∗t−1
}}

. (8)

As a result of this modification, the long-term dynamics of the näıve learning model

change when they diverge, as happens in both of the saddle treatments. In the

SaddleNeg treatment, the dynamic path for the b-number hits 0 at some point and

eventually converges to a 2-cycle, cycling between 0 and 50.24 In the SaddlePos

treatment the dynamics for the b-number under the näıve learning model (for the

initial conditions in Fig. 5) eventually hits 100 and stays there, so that the trajectory

converges to (90, 100). We report the attractors under simulations in the last column

of Table 5. Comparing the simulated dynamics for the two saddlepath treatments

with the dynamics in the experiment as in the middle panels, we conclude that in the

SaddleNeg treatment the näıve learning model generates diverging dynamics for the

b-number in contrast to the experiment. While in the SaddlePos treatment the näıve

model captures convergence of a-number and divergence of b-number consistently with

the experiment, the speed at which b-numbers diverge is larger in the model than in

the experiment.25

Finally, in the Source treatment both eigenvalues are outside of the unit circle

24When the a-number converges to 90, a zero b-guess leads to −90/2 + 95 = 50 as the target
for the b-number. When 50 is submitted as a new guess (according to the näıve model), the target
b-number value becomes negative, resulting in a choice of 0 after truncation.

25Moreover, when participants’ b-guesses hit the upper bound of 100 implying much larger and
unfeasible targets, participants’ earnings are very low and they behave much more randomly than
our truncated specification (8) assumes.
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and the dynamics diverge away from the interior equilibrium except in the special case

where the system starts exactly at that equilibrium, (aNE, bNE). Again, we illustrate

the dynamics in the left panel of Fig. 5, in the bottom row. While in both the

experimental data and the näıve model simulations, the dynamics diverge from the

interior equilibrium, there is a large discrepancy between the experimental data and

the predictions of the näıve model; in the latter, the a-number converges to 0 while

the b-number eventually oscillates between 0 and 95. By contrast, the experimental

data converges to a boundary Nash equilibrium of (0,38) with no oscillation in the

b-number.

We summarize this discussion as follows.

Result 1. The näıve model is not consistent with the experimental evidence. Above

all, it does not predict convergence to the interior Nash equilibrium in the SaddleNeg

treatment. There are discrepancies in other treatments as well, including very differ-

ent dynamics in the Source treatment.

5.2 Homogeneous level-k learning model

In Section 4.1 we analyzed first period choices in light of the level-k model of thinking.

A simple generalization of this model can be made for dynamic choices. We will follow

Nagel (1995) and define level-0 in period t > 1 as guessing the average of the a and

b-numbers from the previous period,26 i.e.,(
āt

b̄t

)
=

(
āt−1

b̄t−1

)
(9)

Agents who follows the level-0 choice in each time period can also be labeled as

“stubborn” agents, since their guesses do not change over all rounds of the experiment.

For example, if all agents are level-0, i.e., if we employ a homogeneous-level 0 model,

and in the first period the average guess is 50 for both numbers, then all agents would

continue to guess 50 for both numbers in all subsequent periods of the experiment.

26One may argue that our level-0 is too simplistic. We have chosen this definition over possible
alternatives on the basis of our experimental data as well as for the sake of exposition. Recall that
the participants had access to the past averages of the a and b numbers, as well as to the past target
numbers. The individual data suggests that both pieces of information were used. The definition of
level-0 as guessing the past average, allows us to define level-1 players as those whose guesses equal
the past target values, following the idea that higher level agents best respond to lower level agents.
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Obviously such a homogeneous level-0 model generates trajectories that are very

different from those that we observed in our experiment.

Following the same logic as for the choices in the first period, we define the level-1

choice at time t as a best response to the level-0 choice at time t. It follows that

level-1 players would submit guesses that are equal to the previous period’s targets.

The dynamical model when all agents are of level 1, i.e., the homogeneous level-1

model, thus coincides precisely with the näıve model (6) analyzed in the previous

section. It follows that the homogeneous level-1 dynamical model is not able to

explain the convergence we observed in the SaddleNeg treatment, and yields other

discrepancies with our experimental data, as in the dynamics for the b-number in the

Source treatment.

Proceeding further, we define a homogeneous level-2 model for time t by guesses

that best respond to the level-1 choice at time t, i.e.,(
āt

b̄t

)
= M

(
a∗t−1
b∗t−1

)
+ d . (10)

More generally, the level-k choice at time t will be to choose numbers that best

respond to the choice of level k − 1 at time t.

The homogeneous level-k learning model assumes that all agents are of level k and

behave in the same way making a level-k choice for some k at every period of time.

Thus for any k > 1 the level-k model simply iterates the level-1 (or näıve) model.

Therefore, the dynamics of the level-k model are governed by a linear system with

matrix Mk. It follows that the homogeneous level-k model will have exactly the same

conditions for convergence, in terms of the eigenvalues, as the homogeneous level-1

(i.e., näıve) model,27 see the level-2 model in Table 7 and compare the convergence

predictions for that model with those for the näıve model in Table 5.

To summarize this discussion, we conclude that neither the level-0 model nor the

homogeneous level-k model with any k ≥ 1 can explain the observed convergence in

the SaddleNeg treatment. On the basis of this we conclude

Result 2. The homogeneous level-k learning model for any finite k is qualitatively

inconsistent with the experimental behavior.

27If µ is an eigenvalue of M with eigenvector v, then µk is an eigenvalue of Mk with the same
eigenvector. Moreover |µ| < 1 if and only if |µk| < 1.
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Note that our results hold only if we restrict ourselves to the model with a ho-

mogeneous level of iterative thinking. Later, in section 5.4, we will investigate mixed

cognitive level models, where agents with different levels of rationality coexist, and

we will find that, in such cases, this negative result can then be reversed.

5.3 Adaptive Learning Model

The adaptive learning model that we consider next, generalizes the näıve model by

assuming that subjects change their guesses in response to past errors.28 According to

this model, players’ choices are adapted towards the targets in a constant proportion

to the guessing error. This model implies the following evolution of average choices:(
āt

b̄t

)
=

(
āt−1

b̄t−1

)
+ λ

[(
a∗t−1
b∗t−1

)
−

(
āt−1

b̄t−1

)]
= λ

(
a∗t−1
b∗t−1

)
+ (1− λ)

(
āt−1

b̄t−1

)
, (11)

with λ ∈ (0, 1]. The näıve model is a special case of the adaptive model when λ = 1.

The second part of expression (11) suggests the following interpretation of the

adaptive model. Assume that the population consists of individuals with different

levels of rationality. If fraction 1 − λ of the population uses the level-0 model, and

the remaining fraction λ of the population best responds to those using the level-0

model, and thus behave according to the level-1 model, then the dynamics in the

whole population will be described by equation (11). This interpretation provides

a useful connection between the homogeneous level-k models that we introduced in

Section 5.2 and the model of adaptive expectations that is frequently used in the

macroeconomics literature. We formulate this connection as the following result.

Result 3. Let level-0 agents be stubborn as in (9), and suppose level-1 agents best

respond to level-0 agents. Then the adaptive model is equivalent to this mixed cognitive

level model with fixed proportions 1 − λ of level-0 agents and λ of level-1 agents in

the population.

More general mixed models, where agents have various levels of rationality and

those with higher levels best respond to the behavior of agents with lower levels, are

28The adaptive model is popular in macroeconomics where it is used to model expectations, and
is known as adaptive expectations; see Nerlove (1958) and Hommes (1994) for theoretical treatment
and Pfajfar and Žakelj (2016) and Bao and Duffy (2016) for recent experimental evidence. Adap-
tive expectations are closely related to constant gain learning models that are increasingly used in
contemporary macroeconomic modelling, see Section 3.3 in Evans and Honkapohja (2001).
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Treatment
Eigen System Converges to aNE and bNE?

µ1, v1 µ2, v2 for a for b

Sink 1− λ/3,

(
−7
3

)
1− 3λ/2,

(
0
1

)
Always

monotone
Always;

jumps when λ > 2/3

SaddleNeg 1− λ/3,

(
−13

3

)
1− 5λ/2,

(
0
1

)
Always

monotone
Only for λ < 0.8;

jumps when λ > 0.4

SaddlePos 1− λ/3,

(
5
3

)
1 + λ/2,

(
0
1

)
Always

monotone
Never,

diverges to 0 or 100

Source 1 + λ/2,

(
−6
1

)
1− 5λ/2,

(
0
1

)
Never,

diverges to 0 or 100
Never,

for λ < 0.8 converges to v1

Table 6: Properties of the adaptive model. This table shows the eigensystem (two
eigenvalues, µ1 and µ2, and their corresponding eigenvectors, v1 and v2). It also
shows predictions of the model in terms of convergence for a generic initial point.

discussed further in the next section. Here we will continue with properties of the

adaptive model. Substituting the target values from (5) into equation (11) we obtain

a linear dynamical system for the averages:(
āt

b̄t

)
= (λM + (1− λ)I)

(
āt−1

b̄t−1

)
+ λd . (12)

As in the case of the näıve and homogeneous level-k models, the only steady state of

the dynamical system characterized by adaptive learning is the internal Nash equilib-

rium (aNE, bNE) = (I −M)−1d. However, the linear dynamics are now governed by

the matrix λM + (1 − λ)I. Given that in all our treatments, the matrix M is lower

triangular, the eigenvalues of this matrix are easy to determine. They are:

µ1 = 1− λ+ λm11 and µ2 = 1− λ+ λm22 . (13)

The eigenvalues of the adaptive model are thus the weighted averages of 1 (with

weight 1− λ) and the eigenvalues of matrix M, i.e., of the näıve model (with weight

λ). Moreover, matrix λM+(1−λ)I has the same system of eigenvectors as the matrix

M.29 This allows us to characterize the convergence properties of the adaptive model

in different treatments for different values of λ, see Table 6.

We find that in order to obtain covergence to the interior equlibrium of the Sad-

dleNeg treatment under the adaptive learning dyanmics, the weight, λ, that is as-

29Assume that v is the eigenvector of λM + (1 − λ)I, associated with the eigenvalue µ1. Then
(λM + (1−λ)I)v = µ1v = (1−λ+λm11)v. But then λMv = λm11v and so Mv = m11v, meaning
that v is the eigenvector of the matrix M that is associated with the eigenvalue m11.
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signed to the previous target by the adaptive model cannot be too large. Specifically,

when λ < 0.8, the dynamics for the b-number will converge. Moreover, the “jump-

ing” behaviour along the b-dimension, which is visible in the phase diagrams of the

experimental data from the Sink and SaddleNeg treatments, and which translates

to non-monotone convergence in the b-number, is also consistent with the adaptive

learning model, but only when λ is not too small. In fact, when λ > 2/3 this fea-

ture of the experimental data is reproduced in both the Sink and the SaddleNeg

treatments. The adaptive model is therefore capable of capturing the major dynamic

patterns observed in all four of our experimental treatments. For instance, the me-

dian numbers of the final experimental period are the same as those predicted by the

adaptive model for the diverging b-number in the SaddlePos treatment (100) and

for diverging a-number in the Source treatment (0). The diverging b-number in the

Source treatment is predicted to be 38 for the adaptive model, which is very close

to the average value of 35 observed in the experiment.

We thus arrive at the following conclusion

Result 4. The qualitative properties of the adaptive model, with weight λ ∈ (2
3
, 4
5
)

are consistent with the experimental evidence in all four treatments.

The right panels in Fig. 5 show the trajectories of the adaptive model where

λ = 0.75, which belongs to the interval identified in Result 4.30 These adaptive

model dynamics can be compared with the näıve model (left panels) and the dynam-

ics from the experimental data (middle panels). As in the case of the näıve model,

we initialized the dynamics for the adaptive model (12), so that the first observation

corresponds to that of the first experimental group (session 1) of the corresponding

treatment (shown in the middle panel). The adaptive model reproduces the main

features of the experimental dynamics much better than the näıve model. Most im-

portantly, the dynamics of the adaptive model are converging to the steady state in

the SaddleNeg treatment as in the experimental data and exhibit divergent dynam-

ics in the Source treatment that are similar to those observed in the experimental

data (not just for session 1, but for all four sessions of these treatments as well).

Truncation according to (8) implies that for the diverging treatments, simulations

result in more regular dynamics than in the experiment. Similarly, in the converging

treatments, simulations are smoother and closer to the eigenvector than in the exper-

iment. This is because the simulated path does not use the experimental data, and

30Online Appendix G provides more discussion on the qualitative properties of the adaptive model
and illustrates the dynamics of that model using other values for λ.
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thus does not account for discrepancies between the model’s prediction and the more

noisy experimental dynamics at every time step.

5.4 Mixed Cognitive Models

The adaptive model suggests that the aggregate choices can be better explained by

models that combine various cognitive levels, e.g., levels 0 and 1. The dynamic version

of such a “mixed cognitive model” starts by assuming that there is a distribution of

the levels of rationality in the population. Some agents, whose proportion is denoted

by f0, use level-0 thinking by submitting as their guess the average number from

the previous period. Other agents, represented by proportion f1, assume that the

population consists only of level-0 agents and play a best reply to the choice of those

agents, i.e., they guess the previous period’s target values. In general, level-k agents

whose proportion is fk, assume that all other agents are of level k−1 and best respond

to them.31

Given an exogenous distribution F = {fk}Kk=0, where K is the largest level in

population, we can write the dynamics generated by such a model (in deviations

from the Nash Equilibrium) as follows(
āt − aNE

b̄t − bNE

)
= f0

(
āt−1 − aNE

b̄t−1 − bNE

)
+ f1

(
a∗t−1 − aNE

b∗t−1 − bNE

)
+ f2M

(
a∗t−1 − aNE

b∗t−1 − bNE

)
+ · · · =

=
(
f0I + f1M + f2M

2 + · · ·+ fKMK
)(āt−1 − aNE

b̄t−1 − bNE

)
.

where
∑

k fk = 1 and fk ∈ [0, 1). As we already recognized in Result 3, when K = 1,

i.e., if there are only two levels, 0 and 1, this model is identical to the adaptive model.

Result 4 then suggests that mixed cognitive models may describe the experimental

data better than any homogeneous cognitive model. To illustrate this point further,

we consider another mixed cognitive model. In this model only level-1 and level-2

agents are present in proportions f1 and f2 = 1−f1.32 The matrix of the corresponding

31In the literature such mixed cognitive models are sometimes referred as the “level-k” model to
be distinguished from the cognitive hierarchy model of Camerer et al. (2004), Chong et al. (2016),
where agents best response to the mixed population of lower levels of rationality and which we will
discuss later on. For this reason we emphasized the assumption of homogeneity in level types in our
prior discussion of homogeneous level-k behaviour and in Result 2 earlier on.

32If our level-0 seems too simplistic, this model can be more reasonable as a mixing model of low
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Treatment
Level-2 Mixed model of level-1 (näıve) and level-2

EVs Converges? EVs Converges to aNE and bNE?
µ1 µ2 for a for b µ1 µ2 for a for b

Sink
4

9

1

4
Yes Yes f1

2

3
+ f2

4

9
−f1

1

2
+ f2

1

4

Always
monotone

Always;
jumps for f1 > 1/3

SaddleNeg
4

9

9

4
Yes No f1

2

3
+ f2

4

9
−f1

3

2
+ f2

9

4

Always
monotone

for 1/3 < f1 < 13/15;
jumps for f1 < 3/5

SaddlePos
4

9

9

4
Yes No f1

2

3
+ f2

4

9
f1

3

2
+ f2

9

4

Always
monotone

Never;
goes to 0 or 100

Source
9

4

9

4
No No f1

3

2
+ f2

9

4
−f1

3

2
+ f2

9

4

Never,
goes to 0 or 100

Never;
for 1/3 < f1 < 13/15 goes to v1

Table 7: Properties of the level-2 and mixed models.

system is f1M+f2M
2. Its eigenvalues are the convex combinations of the eigenvalues

of matrix M and its second power. We summarize the properties of this model in

the last column of Table 7 and observe that for 1/3 < f1 < 3/5 the dynamics are

qualitatively similar to the experimental data.

Result 5. Both the mixed cognitive model with a population consisting of level-0 and

level-1 agents and the mixed cognitive model with a population consisting of level-1

and level-2 agents match, qualitatively, the converging/diverging properties observed

in the experiment.

It then remains an empirical question as to which of these mixed cognitive models

describe the data best. This question will be addressed later, in Section 6.

5.4.1 Cognitive Hierarchy Model

Camerer et al. (2004) introduced a variant of the level-k model where agents of level

k do not simply best respond to agents of level k−1, but rather to a distribution over

all lower levels, which they call the Cognitive Hierarchy (CH) model.33 In this model,

agents are also distributed according to F, but the agents of every level-k are more

sophisticated than in the model we discussed so far, as they play a best response to

the rest of population assuming that all other agents’ levels are lower than theirs and

that those lower level agents are present in the proportions given by the normalized

levels, see footnote 26. However, when our data are used to compare models quantitatively, this
mixing model will not be better than the adaptive learning model, as shown in the next section.

33Chong et al. (2016) provide a generalization of their original cognitive hierarchy model, directly
connecting it with the level-k model.
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distribution F. Thus, every level-k agent first builds a perceived distribution of the

levels of the other agents in the population, {g`}k−1`=0 , with

g` =
f`

f0 + f1 + · · ·+ fk−1
,

where g` is the fraction of level-` agents perceived by the level-k agent. Then, the

agent submits as his/her guess, a best response to the perceived behavior of the other

agents which, in deviation from the Nash equilibrium, is given by

M
(
g0I + g1M + · · ·+ gk−1M

k−1)(āt−1 − aNE
b̄t−1 − bNE

)
.

This guess should be weighted with the actual fraction fk to represent an effect of

all level-k agents on the total dynamics. When these effects are summed up over all

levels of rationality that exist in the population (i.e., from 0 up to K ≤ ∞), we obtain

the dynamics of the CH model.

We note that if K = 1, i.e., if there are only two levels, 0 and 1, the CH model is

identical to the mixed model with levels 0 and 1, and, hence, to the adaptive model.

For larger values of K, i.e., for more levels of rationality, the CH model may seem

quite cumbersome. The next result shows that the CH model can be viewed as the

application of several adaptive models.

Proposition 5.1. The dynamic version of the CH model with distribution F is de-

scribed by the following linear system(
āt − aNE

b̄t − bNE

)
=

K∏
i=1

(λiM + (1− λi)I)

(
āt−1 − aNE

b̄t−1 − aNE

)
, (14)

with λK = fK, and other weights defined as follows: for any ` < K, λ` = f`/
∑`

j=0 fj.

Proof. See Appendix E.

Proposition 5.1 implies that the convergence properties of the dynamic CH model

depend on the product of matrices from different adaptive models. The coefficients

of the adaptive models are given by the perceived relative weight of the largest level

of rationality below the agent’s level and the remaining weight given to the lower

levels. Since in all of our treatments, the matrices are lower triangular, their product
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is also a lower triangular matrix. The diagonal elements of these matrices are thus

the eigenvalues of the dynamic CH model (14), and they are equal to the products of

the eigenvalues of the corresponding adaptive models. Thus, the CH model converges

if all of the adaptive models combined on the right-hand side of (14) converge.34

Camerer et al. (2004) focus on the special case where F is a Poisson distribution.

In this Poisson CH model, the proportion of level-k types in the population is given

by e−τ τ
k

k!
. The only parameter of this distribution, τ > 0, characterizes the average

level of rationality in the population.35 In the special case when the Poisson CH

model is truncated to two levels, 0 and 1, the proportion of the level-1 types is given

by τ/(1 + τ). Applying Proposition 5.1 to the case of the Poisson distribution we

can establish a one-to-one correspondence between parameter τ and the weight in the

adaptive model.

Corollary 5.1. The adaptive model (11) corresponds to the Poisson CH model from

Camerer et al. (2004) with two levels of rationality, 0 and 1, and τ = λ/(1− λ).

We conclude this section by presenting another mixed cognitive levels model.

Recall that some subjects in our experiment submitted the internal Nash Equilibrium

values as their guesses starting from the very first period. For this reason it is useful

to add some weight to this type of behavior36 and consider the mixed model with

levels 0, 1 and the Nash equilibrium:37(
āt

b̄t

)
= f0

(
āt−1

b̄t−1

)
+ f1

(
a∗t−1
b∗t−1

)
+ fNE

(
aNE

bNE

)
, (15)

where f0 + f1 + fNE = 1; f0, f1, fNE ∈ [0, 1].

34On the other hand, even if some of the adaptive models do not converge, the CH model may
still converge.

35If there is some maximum level of rationality, K, as we assume, then the Poisson distribution
is truncated and normalized accordingly.

36In the Sink treatment, where the process of iterative best responses with increasing k converges
to the rational expectation equilibrium, such behavior can be thought as level ∞ of rationality.
However, in the other three treatments there is no such convergence. Nevertheless, in all four
treatments subjects could simply solve the coupled system (which they knew) for the fixed point
to find (aNE , bNE), and some subjects seem to have done this. Our model assumes that such
“fixed-point-solver” subjects are present in proportion fNE .

37We can add the Nash prediction to the other mixed models as well. In Section 6 we estimate
the mixed model consisting of levels 0, 1, 2, and Nash.
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In deviations from the Nash Equilibrium, the dynamics of this model are given by(
āt − aNE

b̄t − bNE

)
= f0

(
āt−1 − aNE

b̄t−1 − bNE

)
+ f1

(
a∗t−1 − aNE

b∗t−1 − bNE

)
=

=
(
f0I + f1M

)(āt−1 − aNE
b̄t−1 − bNE

)
.

The convergence properties of this model depend on the eigenvalues, which are

µ1 = f0 + f1m11 and µ2 = f0 + f1m22 . (16)

Thus, the eigenvalues determining the model’s properties are convex combinations

of the eigenvalues of matrix M, 1, and 0. This is similar to the adaptive model

(11), except that the presence of Nash/fixed point guessers, with fNE > 0 stabilizes

the model even more than when adaptive learning stabilized the näıve model (since

f0 and f1 are now smaller). The model thus is able to generate qualitatively the

same dynamics as the adaptive model, whereas the extra parameter fNE gives more

flexibility, particularly in adjusting the speed of convergence.

5.5 Average Learning Models

One possible reason why the dynamics of the adaptive and other mixed models is

consistent with subjects’ behavior is that those models effectively take into account

all past target values (and those values were available to the participants in our

experiment). For instance in the SaddleNeg treatment, initially the dynamics for the

b-number are oscillating around the Nash equilibrium. If agents use past averages for

the b-number, these oscillations can be dampened and convergence can be obtained.38

There are two standard ways of modelling learning using past averaging. First,

by rewriting the adaptive model (11) recursively, we obtain for any t ≥ 2:(
āt

b̄t

)
= λ

(
a∗t−1 + (1− λ)a∗t−2 + · · ·+ (1− λ)t−2a∗1
b∗t−1 + (1− λ)b∗t−2 + · · ·+ (1− λ)t−2b∗1

)
+ (1− λ)t−1

(
ā1

b̄1

)
. (17)

The adaptive model written in this way involves a constant gain, λ, attached to

38By contrast, for the SaddlePos treatment, the initial dynamics for the b-number moves in a
positive direction away from the Nash equilibrium so that past averaging is not very useful.
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the (exponentially declining) weighted average of all past target values (and some

diminishing weight on the initial average). For this reason the model (17) is also

called the exponentially weighted moving average (EWMA) model.

A second, alternative model averages the previous L target values with equal

weights. We refer to this averaging model as the moving average model, MAve(L).39

When t > L, the average guesses given by this model are:(
āt

b̄t

)
=

1

L

(
a∗t−1 + · · ·+ a∗t−L
b∗t−1 + · · ·+ b∗t−L

)
. (18)

This model requires L initial target values to initialize. For instance, when L = 2,

the model takes the target values of the first two periods, and then, starting from

t = 3, it assumes that agents guess the averages of the two previous target values of

the corresponding variable.40

Table 8 summarizes properties of MAve(L) model (properties of the EWMA av-

eraging model are the same as the adaptive model). When L = 1, we have the näıve

model, and so the left columns of Table 8 are repeated from Table 5. The next

columns correspond to the case of L = 2. The system is described by a 4-dimensional

system, whose eigenvalues we compute numerically to identify convergence conditions

for the whole system.41 The analytic results for the moving average model with larger

L are limited, as the dimension of the system increases (with L) so we must rely on

simulations. However, the case when L → ∞, i.e., when participants in each period

average all past target values, can be studied using the principle of E-stability, see

Online Appendix H. The last columns of Table 8 summarize the results of this anal-

ysis (where the conditions for convergence are that the reported eigenvalues of the

T map are negative). As Table 8 indicates, the major predictions of the MAve(L)

model with L ≥ 2 are consistent with our experimental data: the model generates

convergence in exactly those treatments (Sink and SaddleNeg) where convergence

39In the so-called “econometric learning” approach in macroeconomics, as advocated by Evans
and Honkapohja (2001) this model is presented as a less restrictive alternative to Rational Expec-
tations, with agents learning parameters of their perceived model by means of statistical inference
from past observations. Both the EWMA and the MAve(L) models belong to this literature. The
EWMA model is known as a constant gain model, because the weight attached to the latest available
observation is the same for every time t. The MAve(L) model assigns smaller and smaller weights
to the most recent observation, see Equation (18), and so this model is known as the model with
decreasing gain, which approximates recursive least squares learning.

40When L = 1, this model is identical to the näıve model.
41As the dynamics of the variable a is independent of b, we can determine the converging properties

of this variable and then infer the properties of b from the stability conditions of the whole system.
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Treatment
L = 1 (näıve) L = 2 L = 3 L =∞ (LS learning)

EVs Converges? Converges? Converges? EVs of T-map Converges?
µ1 µ2 for a for b for a for b µ1 µ2 for a for b

Sink
2

3
−1

2
Yes Yes Yes Yes Yes Yes −1

3
−3

2
Yes Yes

SaddleNeg
2

3
−3

2
Yes No Yes Yes Yes Yes −1

3
−5

2
Yes Yes

SaddlePos
2

3

3

2
Yes No Yes No Yes No −1

3

1

2
Yes No

Source
3

2
−3

2
No No No No No No

1

2
−5

2
No No

Table 8: Properties of the moving average model MAve(L) with different L. In the
last four columns the table reports the eigenvalues of the ODE system (so-called T -
map) that define the E-stability of the model when L→∞. The E-stability condition
is that the eigenvalues of the T -map are negative.

was observed in the experiment and divergence otherwise (SaddlePos and Source).

To simulate the moving average model we initialize the targets for the first period

only. Then, equation (18) is used for t > L, whereas when t ≤ L, all available

observations are equally weighted.42 Figs. 19 and 20 in Online Appendix H compare

the experimental data (left panels) with simulations of the moving average model

for L = 2 and L = 3 (which look similar). When the dynamics are initialized

using the experimental data (the right panels) there is a visible difference in the

dynamics between the data and the model. Convergence in the Sink and SaddleNeg

treatments occurs in the model quicker than in the experiment (at least in the first 3-5

periods) and in a more orderly way (e.g., without the “jump” patterns for b-guesses).

Divergence in the SaddlePos and Source cases is also somewhat quicker, i.e., the

dynamics reach the boundaries in fewer steps in the model as compared with the

data.

Fig. 21 in Online Appendix H shows simulations of the model when at each step

all available targets are averaged. This is, in effect, the Ave15 model whose property

can be approximated by the L = ∞ case. From simulations we observe that as L

gets larger, the convergence path generated by the model becomes even less similar

to the experimental data. The dynamics start with a larger jump from the period

1 target than in the experiment, indicating a quicker reaction and convergence, but

eventually it does not reach equilibrium in 15 steps. The convergence turns out to be

42In Eq. (18) the factor on the right-hand side becomes 1/(t− 1) and the last term in the sums
are from period 1.
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very slow, and this is because in this average model, the new observations get lower

weights as time goes on (the weights are inversely proportional to the number of past

periods). This delays the incorporation of new information. Because of this property

of weighting new observations with increasingly smaller weights, the average model

(18) is often referred to as the decreasing gain model.

Result 6. The convergence properties of MAve(L) model, with L ≥ 2, are consistent

with experimental dynamics across treatments. However, there are some discrepancies

in speed and patterns of convergence/divergence.

6 Estimation

In this section we compare the models discussed in Section 5 in terms of their quan-

titative fit to the experimental data. For a given session and period, each learning

model L generates a prediction by mapping the experimental data available to the

participants in that session and period t (i.e., all information throug period t − 1,

including previous targets and averages of both numbers) to the average guesses for

period t: (
āmt
b̄mt

)
= L

[(
a∗t−1
b∗t−1

)
,

(
āt−1

b̄t−1

)
,

(
a∗t−2
b∗t−2

)
,

(
āt−1

b̄t−1

)
, . . . ;θ

]
. (19)

Some models contain parameters, which we denote by θ, and so we also estimate

these parameters. Thus, each learning model gives one-period ahead predictions, āmt
and b̄mt for the corresponding session at time t. To avoid cumbersome notation, we

do not add a session-specific index to the values in the right-hand side of (19).43

We estimate and compare the following models:

• the internal Nash equilibrium (NE) prediction;

• the näıve model (6);

• the average models, including the moving average models (18) with 2 to 5 lags;44

43The presence of the experimental data in the right-hand side of (19) distinguishes this one-
period ahead prediction from the simulated paths analyzed in the previous section, which does not
make use of the experimental data.

44For these models, if the window over which the average is computed is larger than the available
data at a given time period, then we compute the average over all available observations.
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and the exponential weighted moving average (EWMA) model (17).45

• homogeneous level-k models with k = 0 (stubborn), k = 1 (näıve) and k = 2;

• two versions of adaptive model: the standard model as in (11), and its gener-

alization with different parameters, λa and λb, for a and b numbers (see Ap-

pendix G);

• mixed cognitive models with various combinations of level-k models and NE-

model;

• the cognitive hierarchy (CH) model with a Poisson distribution over levels up

to k = 5.

We estimate the parameters of the models (containing parameters) by minimizing

the sum of squared errors (SSE) between model predictions and the actual data from

the experiment. Since estimating the adaptive model requires one lag, for comparison

purposes we estimate all models starting from period t = 2. The SSE for a given

session is thus defined as

15∑
t=2

(
(āmt − āt)2 + (b̄mt − b̄t)2

)
.

We seek universal parameters for all treatments and sessions. For this reason in

estimating the model’s parameters θ, we minimize the sum of the SSEs over all

treatments and sessions.46 Parameter estimates resulting from this estimation for

different models are shown in column 2 of Table 9. For all parameter estimates we

also report the associated standard errors (in parentheses).

We compute standard errors using a nonparametric bootstrap method from Hansen

(2019), Chapter 10.9. To account for time and session dependence, we perform boot-

45We stress that although the EWMA model (17) is equivalent analytically to the adaptive model
(11), and the models generate the same simulated path, we estimate them differently. The parameter
of the adaptive model is estimated as a linear regression of the averages on the averages and guesses
from the last period, whereas the parameter of the EWMA model is estimated by minimizing the
SSE between the actual averages and the averages generated using all past targets as in (17). The

initial

(
ā1
b̄1

)
on the right-hand-side of this equation is set to

(
a∗1
b∗1

)
.

46We also allowed for variations in parameters between different treatments, but this did not result
in superior model fit (in terms of the leave-one-out MSEs as explained further). As a robustness
check, in addition to the full sample estimation, we restimated all models using the data from
the converging Sink and SaddleNeg treatments only. There were quantitative changes in some
parameters, but the overall performance rankings of the models remained similar (see Appendix I).

42



Models Parameter Estimates
Out-of-sample MSEs

Sink SadNeg SadPos Source Overall

NE - 221.16 97.53 4559.81 5685.28 2640.94

Näıve - 44.03 25.00 212.42 318.09 149.88

Average

MAve(2) - 35.76 23.15 199.29 269.72 131.98
MAve(3) - 36.57 24.95 187.91 263.17 128.15
MAve(4) - 36.30 29.37 183.30 252.84 125.45
MAve(5) - 39.02 34.04 182.05 255.46 127.64
EWMA .42 (.06) 37.07 29.77 185.18 250.64 125.66

Level-k

0 (Stubborn) - 49.02 59.20 138.00 210.57 114.20
1 (Näıve) - 44.03 25.00 212.42 318.09 149.88
2 - 89.36 153.34 397.90 683.08 330.92

Adaptive
λa = λb .44 (.03) 32.33 13.42 84.68 114.58 61.25
λa 6= λb .38 (.03) .47 (.04) 32.48 13.06 87.86 112.34 61.44

Mixed

0 1 (Adaptive) .56(.03) .44(.03) 32.33 13.42 84.68 114.58 61.25
0 1 2 .56(.03) .44(.03) .00(.00) 32.33 13.42 84.68 114.58 61.25
1 2 .84(.03) .16(.03) 48.73 15.68 232.68 279.69 144.19
0 NE 1.00(.00) .00(.00) 48.82 59.01 138.87 211.58 114.57
1 NE .86(.01) .14(.01) 58.94 27.29 113.92 129.42 82.39
0 1 NE .41(.02) .52(.02) .07(.01) 34.05 9.05 74.06 87.14 51.07
0 1 2 NE .40(.03) .50(.02) .03(.02) .07(.01) 34.98 9.82 74.61 86.70 51.53
1 2 NE .71(.02) .16(.02) .14(.01) 65.89 23.06 127.17 93.00 77.28

CH-Poisson max k = 5 .56 (.05) 32.54 16.10 83.20 117.03 62.22

Table 9: Estimation and performance of various learning models in terms of the
out-of-sample, one-step-ahead MSE using the leave-one-out procedure. MSEs are
computed for periods 2 to 15.

strap random sampling with replacement on the level of one session in each treatment.

In particular, each new bootstrap sample is generated by drawing randomly with re-

placement four sessions for each treatment from the four actual sessions corresponding

to a particular treatment. The number of bootstrap samples is 1000. We compute

parameter estimates for each of the bootstrap samples and then take their standard

deviation as standard errors.

Next, we compare the performances of the models using their out-of-sample one-

step-ahead prediction mean squared error (MSE). We compute the MSEs for every

treatment separately and report the results in the next four columns of Table 9. In the

last column of the table, we report the MSEs averaged over all treatments, i.e., over

all 16 sessions. To compute the out-of-sample MSEs for the models with parameters

we use a variant of cross-validation (Stone, 1974). In particular, we first re-estimate

the model parameters with one of the sessions left out. Then, we compute the out-

of-sample one-step-ahead MSE of the estimated model on the data of the left-out
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session.47 We perform this procedure for each session of each of our four treatments.

That is, for each treatment, each session is left out once and we compute MSEs for each

of the four left-out sessions. Finally, we average these MSEs over the four sessions of

each treatment and then over all 16 sessions to compute the overall MSE. Consistent

with the estimation, we evaluate MSEs starting from period 2 for all models.

Comparing the MSEs for all considered models, we find that the internal NE

prediction is the least accurate among all models. The näıve (Level-1) model shows

much improved performance, especially for the converging Sink and SaddleNeg

treatments. The moving average models generally perform better than the näıve

model. In particular, the model with a 4-lag moving window is the best in the class

of average models, narrowly beating the EWMA model. However, the homogeneous

level-0 (stubborn) model performs better in terms of the overall MSE than any av-

eraging model. This finding is predominantly due to the better performance of the

stubborn, level-0 model in the case of the non-convergent treatments. Next we ob-

serve that the adaptive models perform substantially better than all prior models

considered in Table 9. The standard adaptive learning model with one parameter

(λa = λb = λ), which is equivalent to the mixed cognitive model with levels 0 and 1,

performs better than the adaptive model with the two separate parameters for the a

and b numbers. Note that the parameter estimates for the single-parameter adaptive

model are close to the parameter estimates of the EWMA model, but the fit of the

EWMA model (in terms of MSE) is comparatively worse because the EWMA model

does not consider the actual realizations of the past averages when making predic-

tions. Interestingly, the estimated parameter of the single parameter adaptive model,

λ̂ = 0.44 is lower than the theoretically derived parameter range
(
2
3
, 4
5

)
which can

explain the fluctuations observed in the experimental data (see Result 4). One of the

explanations is that the econometric model allows the exogenous noise (fluctuations),

while in Section 5 we considered only the deterministic path. Moreover, when we

re-estimate the parameter λ considering only the converging Sink and SaddleNeg

treatments, we get λ̂ = 0.61, which is closer to the theoretical lower bound. Finally,

the mixed cognitive model with levels 0, 1 and the internal NE outperforms all other

considered models (in terms of average MSE). Note that this model is equivalent to

47It is called “out-of-sample” because the data of the session for which the MSE is computed
were not used to estimate the model parameter(s). This procedure has an implicit penalty for the
number of parameters (over-parametrized models perform better “in-sample”, but show worse “out-
of-sample” performance because of over-fitting). AIC or BIC are popular model selection criteria
which have explicit penalty for the number of parameters. In fact, leave-one-out cross-validation is
asymptotically equivalent to AIC (Stone, 1977).
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Level 0 1 2 NE

Periods 1-15 0.52 0.40 0.03 0.06
(0.02) (0.02) (0.02) (0.01)

Period 1 0.68 0.18 0.00 0.14
(0.03) (0.04) (0.01) (0.03)

Periods 2-15 0.40 0.50 0.02 0.07
(0.03) (0.02) (0.02) (0.01)

Table 10: Mixed model with levels 0, 1 and 2 and NE (internal Nash Equilibrium)
for different periods. All parameter estimates in bold significant at 5% level.

the one-parameter adaptive model with the added internal NE. The mixed model

with levels 0, 1, 2 and the internal NE is very close, but in second place. The CH-

Poisson model shows reasonably good performance, but it performed slightly worse

than a simpler adaptive model and the best mixed model. The parameter estimate

of the CH-Poisson model τ̂ = 0.56 indicates that the average level of rationality is

somewhere between level-0 and level-1.

Next, we estimate the weights of the general mixed model with levels 0, 1, 2 and

NE, on all periods 1–15 and then investigate whether they change between periods. In

particular, we focus on the change between period 1 and periods 2–15. Table 10 shows

parameter estimates and their standard errors (in parenthesis) for the mixed model

using the whole sample and these sub-periods. The standard errors are estimated

by the bootstrap method previously described. The parameter estimates that are

significant at the 5% level are denoted by bold font. Moreover, for these estimates

the differences between periods 1 and 2-15 are also significant. We observe that in

period 1, there is more weight on level-0, while in the remaining periods the weight of

level-1 is significantly higher. The weight on the internal NE in periods 2-15 falls in

comparison to period 1. This may be viewed as some evidence that more participants

learned to use level-1 and those who computed the internal NE in the first period

learned not to abandon that strategy. The parameter estimates on level-2 are not

significantly different from zero in all sub-periods. Robustness checks using data from

just the two converging treatment, Sink and SaddleNeg yield similar estimates.
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7 Conclusion

We conduct the first experiment generalizing the Beauty Contest game to two di-

mensions. The model we study is connected to the IO, trade and macroeconomic

literatures, where two dimensional coupled systems in which expectations matter of-

ten arise. For simplicity, we have focused on the simplest possible structure, such that

variable a is decoupled, but variable b depends on the average predictions of both a

and b.

We conduct four treatments with various eigenvalues for the planar system. Con-

vergence is achieved in the Sink treatment and in the Saddle treatment but only when

there is negative feedback (the sign of the unstable eigenvalue is negative). Rather

remarkably, participants are able to learn and follow the saddle path in this case

without initially being placed on the saddle path itself. Saddle path dynamics often

appear in theoretical macroeconomic models and it is typically assumed the agents

operate on the saddle path. Our results suggest that for certain parameterizations

of such models, this assumption may be reasonable, whereas for other parameteri-

zations of such models, it is not. Indeed we observe that the Saddle with positive

feedback (the sign of the unstable eigenvalue is positive) and the Source dynamics

reliably result in divergence away from the interior steady state. Thus, as found in

uni-variate models, such as the original beauty contest game, negative feedback also

seems to play a role in disciplining convergence in multivariate, planar systems.

Finally, we have compared the performance of a variety of different learning models

found in the literature on learning in games and learning in macroeconomics in terms

of both convergence dynamics and fit of the estimated model. Indeed, a further

contribution of our paper is to provide a kind of “Rosetta stone” linking, e.g., level-k

models from behavioral game theory with the adaptive learning approach used in the

econometric learning literature in macroeconomics. Among the many learning models

we consider, we find that a mixed, cognitive levels model (with levels 0, 1 and NE),

which is analogous to the single-parameter adaptive learning model with some weight

on the internal NE, outperforms all other considered learning models in terms of the

out of sample mean squared error of its predictions.

There are several directions in which the evaluation of learning models in mul-

tivariate systems using experimental data might profitably proceed. For instance,

one could consider fully coupled systems, or systems with more than 2 dimensions or
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systems with a more explicit dynamic linkage between periods. While we think all of

these extensions are interesting and worth pursuing, we leave such exercises to future

research.
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APPENDIX

A Motivating Examples

In this appendix, we provide two motivating examples of economic models that map

into the basic framework described in Section 2.

A.1 Oligopoly market example

The first example concerns price expectations in two interrelated oligopoly markets,

one for product group A and the other for product group B. Assume that the N firms

compete in each of these two markets on price, but produce differentiated products.

For simplicity, we assume that the cost of producing products is the same across all

firms, Ci(q
A
i , q

B
i ) = F + c(qAi + qBi ), where parameter c denotes the marginal cost of

production, and qAi and qBi are the quantities produced by firm i for markets A and B,

respectively. Note that we assume that there are neither economies, not dis-economies

of scope.

The demand for the product of firm i in market A is given by the following

function:

DA
i (pAi , p̄

A
−i) = αA − βApAi + γAAp̄A−i , βA > 0 , (A.1)

where pAi is the price of the product, p̄A−i = 1
N−1

∑
j 6=i p

A
j is the average price charged

by all other firms in market A. Parameter γAA specifies the relationship between

the products of various firms in this market: for γAA > 0 the goods are substitutes,

whereas for γAA < 0 they are complements. Linear demand as in (A.1) can be derived

from consumer’s linear-quadratic utility function.

The demand for the product of firm i in market B is given by following function:

DB
i (pBi , p̄

A
−i, p̄

B
−i) = αB − βBpBi + γAB p̄A−i + γBB p̄B−i , βB > 0 , (A.2)

where pBi is the price of the product in market B and p̄B−i = 1
N−1

∑
j 6=i p

B
j is the

average price charged by all other firms in this market. Parameter γBB specifies the

relationship between the products of various firms in market B in the same way as

γAA did it for market A: for γBB > 0 the goods are substitutes, whereas for γBB < 0

they are complements.

When γAB 6= 0 in (A.2) markets A and B become interconnected, in the sense that
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the demand in market B depend on average price in market A.48 When γAB > 0 the

higher average price of products sold in market A lead to a higher demand of good in

market B, and so the markets become substitutes, whereas for γAB < 0 the markets

are complements. Such between-markets connections can occur when products traded

in market A are the intermediate goods used in production of goods traded in market

B. Examples include the markets for oil and gasoline, or the markets for milk and

cheese.

Firm i maximizes its total profit

πi(p
A
i , p

B
i ; p̄A−i, p̄

B
−i) =

(
pAi − c

)
DA
i (pAi , p̄

A
−i) +

(
pBi − c

)
DB
i (pBi , p̄

A
−i, p̄

B
−i) .

The first-order conditions are given by

∂πi
∂pAi

= αA − βApAi + γAAp̄A−i − βA(pAi − c) = 0

∂πi
∂pBi

= αB − βBpBi + γAB p̄A−i + γBB p̄B−i − βB(pBi − c) = 0

Solving these equations we find optimal prices of firm i for markets A and B:

pAi =
1

2βA
(
αA + γAAp̄A−i + cβA

)
,

pBi =
1

2βB
(
αB + γAB p̄A−i + γBB p̄B−i + cβB

)
.

Thus price setting game of N firms is exactly equivalent to our planar beauty contest

game as introduced in Section 3.

A.2 New Keynesian model example

For another motivating example of a planar system studied by macroeconomists that

is consistent with our setup, consider a contemporaneous expectations (static) version

of a New Keynesian model. The model consists of equations for inflation, πt, the

output gap, yt, and a policy rule for the nominal interest rate, it:

πt = πet + κyt

yt = yet − ϕ(it − πet − r)
it = λ(πt − π)

48Another way to connect the markets would be by modeling economies/dis-economies of scope
in the cost functions, say, as in Bulow et al. (1985).
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In these equations, πet denotes expected inflation, yet is the expected output gap, r is

the exogenously fixed real rate of interest, π is the central bank’s inflation target and

κ > 0, ϕ > 0 and λ > 0 are parameters.49

The system can be rewritten in the following matrix form:(
πt
yt

)
= M

(
πet
yet

)
+ d

where

M = Ω

[
1 + κϕ κ

1 ϕ(1− λ)

]
,

d = Ω

(
κϕ

ϕ

)
(λπ + r)

and

Ω ≡ 1

1 + κϕλ

Note that this is an example of a multivarite, coupled system of equations where

expectations of the two endogenous variables both matter for the realizations of those

variables. In our experiment, we take πet and yet to be the average forecasts of the n

agents (subjects) who have full knowledge of the data generating process.

Suppose we consider standard calibrations of the New Keynesian model where

0 < κ ≤ 1, 0 < ϕ ≤ 1 (see, e.g., Gaĺı, 2015). Then, one can show that for values of

the policy parameter 0 < λ < λ̂, the system is a saddle with a positive unstable root.

For values of λ > λ̂, the system has two stable eigenvalues −1 < µ1 < 0 < µ2 < 1,

so that the system becomes a sink and the steady state is strongly stable. More

generally, we wish to abstract from a particular macroeconomic application and to

consider a variety of different planar systems as characterized by whether the steady

state is strongly stable (a sink), saddle-path stable, or unstable, two explosive roots

(a source).

49Modern versions of the model have forward looking expectations, i.e. πe
t+1 and yet+1 in place

of πe
t and yet , but this timing difference only complicates the timing of payoff realizations in our

experiment and is not our main question of interest, which concerns the ability of agents to learn
the steady state of various parameterizations of coupled, planar system.
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B Equilibria of the Game

Consider the planar beauty contest game with matrix M, such that I−M is invertible

matrix (in other words, 1 is not among the eigenvalues of M). This game with

individual strategy space R, i.e., with no bounds on possible guesses, has a unique

Nash equilibrium, and it is given by the strategies in (4).

To prove it note that when ai = aNE and bi = bNE for every i, the averages are

ā = aNE, b̄ = bNE, and from (2) the target values are(
a∗

b∗

)
= M(I−M)−1d+ d = M(I−M)−1d+ (I−M)(I−M)−1d = (I−M)−1d .

Thus the target values coincide with individual guesses for both numbers, which leads

to the maximum possible payoff for a participant according to (3). Any deviation from

such profile will lead to lower payoffs.

Since in all our treatments point (aNE, bNE) = (90, 20) lies in the interior of the

strategy space [0, 100]×[0, 100], the same profile is always the Nash equilibrium in our

experiment. However, other Nash equilibria are also possible due to the boundaries

in the strategy space.

We will first show that the asymmetric equilibria are impossible in the game.

Assume that there is a pair of different strategies in equilibrium profile. Without

loss of generality we assume that the a-numbers differ, and denote the left-most and

right-most among all a-numbers in the profile as aL and aR, respectively. Then for

the average of all a-numbers, ā, we must have that aL < ā < aR. We will show now

that if the target is to the left from ā, then strategy aR can be replaced by another

strategy (without changing the b-number denoted as b) with larger payoff. (If the

target is to the right from ā, a symmetric argument can be made with replacing aL
strategy.)

Indeed, let us decrease guess aR by a small amount ε > 0. This will decrease the

average of a-numbers by ε/N , and change the a-target to a∗− εm11/N . The distance

between the new target and new strategy is aR − a∗ − ε(N − m11)/N . The target

for the b-number has changed to b∗ − εm21/N . Therefore, overall there is a gain of

ε(N − m11)/N for the a-target and there might be a maximal loss of ε|m21|/N for

the b-target. In total as the strategy (aR, b) was replaced by (aR − ε, b), there is

an increase in performance as measured by a sum of absolute deviations of a- and

b-numbers by at least ε(N −m11 − |m21|)/N and this quantity is strictly positive for

N = 10 as in our treatments.
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Since only symmetric equilibria are possible, all participants submit the same

number in any equilibria. But then the extra equilibria in the beauty contest game

with bounds are possible only when participants submit one or both guesses on the

bounds and receive the targets outside of the bounds. It is then straightforward to

check the following:

• Evolution for a-number will give extra equilibria 0 and 100, but only in the

Source treatment.

• Evolution for b number in the equilibrium with aNE = 90 will give extra equi-

libria 0 and 100 but only in the SaddlePos treatment.

• In the Source treatment: in the a-number equilibrium 0 the evolution for

b number has a unique equilibrium 38; in the a-number equilibrium 100 the

evolution for b number has a unique equilibrium 18.

This completes proofs of the statements of Section 3 summarised in Table 1.

C Experimental Instructions

The following instructions (for treatment Sink) were distributed to every participant

and read loudly. The equations were explained and displayed on the screen during

the whole experiment.

Welcome to this experiment in economic decision-making. Please read these instruc-

tions carefully as they explain how you earn money from the decisions you make in

today’s experiment. There is no talking for the duration of this session. If you have a

question at any time during the experiment, please raise your hand and your question

will be answered in private. Kindly silence and put away all mobile devices.

General information: You are in a group of 10 participants including you. There

are 15 successive time periods 1, 2, . . . , 15 in this experiment. The same participants

will be in your group during this experiment in all 15 periods. In each period you

have to choose two numbers, an “A-number” and a “B-number”. Your choice for

each number must be between 0 and 100 inclusive which means that 0 or 100 are

also allowed. Every participant in your group also chooses a pair of numbers, an

“A-number” and a “B-number”, between 0 and 100 inclusive. After you and every

other participant in your group have chosen a pair of numbers, two target values will

be determined as explained below, one for the “A-numbers” and another for the “B-

numbers”. Your earnings from this experiment will depend on how close your chosen
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numbers are to the corresponding target values. The closer your numbers are to the

target values, the greater will be your earnings.

Determination of the target values: In each time period, you and all other

participants choose one “A-number” and one “B-number”. After all participants

have chosen their numbers, the target values for the “A-numbers” and “B-numbers”

are determined on the basis of the average values of all 10 “A-numbers” and all 10 “B-

numbers” (including your own choices). The average of all “A-numbers” is computed

as the sum of all ten “A-numbers” chosen by the participants in your group in this

period and divided by 10. The average of all “B-numbers” is determined as the sum of

all ten “B-numbers” chosen by participants in your group in this period and divided

by 10. The corresponding target values, A* and B*, are computed as follows:

A* = 30 + (2/3)× Average of all “A-numbers”

B* = 75− (1/2)× Average of all “A-numbers”− (1/2)× Average of all “B-numbers”.

Note that the target value, A*, depends on the choices made by all participants in your

group (including yourself) of “A-numbers”, whereas the target value B* depends on

the choices of all participants in your group (including yourself) of both “A-numbers”

and “B-numbers”.

Here is an example: For simplicity suppose that there are only 3 participants in a

group and in some period they submit the following “A-numbers”:

50.50 100 20.25

and “B-numbers”

10.79 30 0 .

Then, the average of the “A-numbers” is (50.50 + 100 + 20.25)/3 = 170.75/3 = 56.92

and the average of the “B-numbers” is (10.79 + 30 + 0)/3 = 40.79/3 = 13.6. Given

these averages, the target values are:

A* = 30 + (2/3)× 56.92 = 67.95; and

B* = 75− (1/2)× 56.92− (1/2)× 13.6 = 39.74.

All results are rounded to 2 decimals. Please, note that this example is for illustration

purposes only. The actual group size in the experiment is 10 participants.

About your task: The experiment lasts for 15 periods. Each period your only task

is to choose two numbers, an “A-number” and a “B-number”. Your goal is to choose

these numbers to be as close as possible (in absolute value) to the target values A*
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and B* which will be determined in each period, using the procedure explained above

after all participants in your group have made their choices. Both numbers you choose

should be between 0 and 100, inclusive. You may enter a real number with up to 2

decimals.

About your earnings: Your decision will determine how many points you receive

each period. Your earnings will be based on the sum of all your points over the 15

periods, with 1 point = 1 US cent. In addition, you are guaranteed to receive $7 as a

show-up payment. Your points in each of the 15 period are based on how close your

“A-number” and “B-number” are to the target values A* and B* and are calculated

(by the computer program) as follows:

Your payoff in points each period =

500

5 + |your “A-number”− A*|+ |your “B-number”− B*|)

where | · | is an absolute value (deviation), e.g., |3 − 5| = 2, |5 − 1| = 4. Notice

several things. First, if you submit the exact target values for A* and B*, you receive

the maximum payoff of 100 points. Second, deviations from the target values, A* or

B*, have an equal effect on your payoffs; the further you are away from either target

value, the lower is your payoff in points. Third, the payoff of all 10 participants in

your group is determined in a similar way. Finally, all 10 participants (including you)

can earn the maximum of 100 points if all choose the exact target values for A* and

B*. For your convenience we provide a table on page 4 showing how your payoff

changes depending on the deviations of your A and B choices from the target values,

A* and B*.

Example continued: In the example above, a participant who submitted the “A-

number” 50.50 and the “B-number” 10.79, misses the target value A*= 67.95 by 17.45

and the target value B*= 39.74 by 28.95, and, so his payoff in points is given by:

500

5 + |50.50− 67.95|+ |10.79− 39.7|
=

500

5 + 17.45 + 28.95
= 9.73 “points”

(rounded to 2 decimals).

Information and Record Keeping: At the end of each period, you will see a

screen that reports the results of the just completed period. Specifically, you will be

informed of:

• The “A-number” and “B-number” that you submitted for the period

• The average of all “A-numbers” and the average of all “B-numbers” submitted
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by group members for the period

• The computed target values A∗ and B∗ for the period

• Your points earned for the period

Please record this information on your record sheet for each period under the ap-

propriate headings. When you are done recording this information, click on the OK

button in the bottom right corner of your screen.

So long as the 15th period has not yet been played, we will move to the next period

decision screen. On that screen you will have to type the “A-number” and “B-

number” for the current period. Additionally, you will see a history table displaying

for each prior period:

• your chosen “A-number” and your chosen “B-number”

• averages of all “A-numbers” and all “B-number”

• computed target values A* and B*

• your points earned

Points Table The table gives the number of points for a given discrepancy of “A-

number” from the target value A* (the first column) and a given discrepancy of

“B-number” from the target value B* (the first row).
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The figure below shows the relation between the number of points you score (vertical

axis) and the combined discrepancy

|your “A-number”− A*|+ |your “B-number”− B*|

of your chosen numbers and the targeted values (horizontal axis). Notice that the

table presents only some possibilities for your point earnings (the table is not ex-

haustive) and that the number of points you earn decreases more slowly as your

discrepancies from the two target values increase.

Additional Information

• Before the experiment starts you will have to take a short quiz which is designed

to check your understanding of the instructions.

• At the end of the experiment you will be asked to answer a questionnaire before

you are paid. Your answers will be processed in nameless form only. Please fill

in the correct information.

• During the experiment any communication with other participants, whether

verbal or written, is forbidden. The use of phones, tablets or any other gadgets

is not allowed. Violation of the rules can result in removal from the experiment.

• You may use the back side of your record sheet as scratch paper if you wish.

Do not write your name on this, only write your ID number on the front side.

59



Sink SaddleNeg
ε Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess. 1 Sess. 2 Sess. 3 Sess. 4

20 5 8 4 4 5 2 4 3
10 7 - 6 15 9 5 5 5
5 8 - - - 11 6 8 7
1 10 - - - - 12 12 9

0.5 15 - - - - 14 13 14

Table 11: The latest period when the trajectory enters the ε-neighborhood of equi-
librium irreversibly, i.e., to stay there until the end of the experiment. The hyphen
denotes the cases when the trajectory was outside of the ε-neighborhood in the last
period of the experiment.

• Please follow the instructions carefully at all the stages of the experiment. If

you have any questions or encounter any problems during the experiment, please

raise your hand and the experimenter will come to help you.

Please ask any question you have now!

D Speed of Convergence

In addition to the first hit time as reported in Table 3, we made an across treat-

ment comparison of the latest experimental period when the trajectory entered the

ε-neighborhood to stay there until the end of the experiment (so to say, the period

of “irreversible entry”). This statistics is only relevant for the sessions when the

trajectory entered the neighborhood at least once. Hence, we do not compute it for

SaddlePos and Source treatments. Formally, given ε > 0, the latest time to irre-

versibly enter the ε-neighborhood, τ(ε), is the period such that (āτ(ε)−1, b̄τ(ε)−1) /∈ Uε
and (āt, b̄t) ∈ Uε for any t ≥ τ(ε).

Results presented in Table 11 confirm the conclusion made in the main text for

comparison between the SaddleNeg and Sink treatments. Not only convergence

happens faster in the SaddleNeg treatment, it is also the case that in this treatment

the trajectories stay in the vicinity of the equilibrium for a longer time before the end

of the experiment.

We will now make the same analysis for the trajectory of a-numbers only. For

ε > 0, the neighborhood is defined as Uε = (aNE − ε, aNE + ε). Table 12 shows the

first hit time (and the period of irreversible entry in parentheses) for all sessions of
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Sink SaddleNeg SaddlePos
ε Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess. 1 Sess. 2 Sess. 3 Sess. 4

20 5 8 4 4 5 2 4 3 3 (9) 7 4 3
10 7 11 (14) 6 11 (15) 9 5 5 5 11 (14) 11 7 6
5 8 - 8 (-) - 11 6 8 7 15 14 10 8 (11)
1 10 - 14 (-) - 15 12 12 9 - - - -

0.5 10 (15) - - - - 14 13 9 (14) - - - -

Table 12: The first hit times for a-number trajectories for different neighborhoods.
The hyphen denotes the cases when the trajectory never entered the ε-neighborhood.
The periods of irreversible entry are shown in parentheses when they differ from the
first hit time.

the Sink, SaddleNeg and SaddlePos treatmentsfor five different values of ε. (In

the Source treatment, the trajectories never entered the Uε neighborhood for ε ≤ 20.

Table 12 suggests that the quickest convergence of a-number was in the Sad-

dleNeg treatment. It also shows that the convergence in SaddlePos treatment was

the slowest when the relatively small neighborhood around equilibrium is considered.

E Proof of Proposition 5.1

Let H(K) denote the operator that describes the dynamics of the CH model, i.e.,

the map from period t− 1 to period t deviations of a and b numbers from the Nash

Equilibrium. We need to prove that H(K) =
∏K

i=1(λiM + (1− λi)I) with λ’s defined

as above.

The level-0 agents play the previous averages and hence contribute with operator

I. The level-1 agents play the best response and contribute with operator M. If level

1 is the highest level, we conclude that H(1) = f1M + (1− f1)I, as required.

Assume now that 1 is not the highest level. Note that from the perspective of

agents of level 2, the average play of 0 and 1 level agents is λ1M + (1 − λ1)I with

λ1 = f1/(f1 + f0) and 1−λ1 = f0/(f1 + f0). The level-2 agents’ best response is then

M(λ1M+(1−λ1)I). If the level 2 is the highest level in population, we can complete

the model, by weighting this best response with f2 and putting the remaining weight

1− f2 to the average play of level-0 and 1 agents as defined above. This leads to the

operator

H(2) = f2M
(
λ1M + (1− λ1)I

)
+ (1− f2)

(
λ1M + (1− λ1)I

)
=

=
(
f2M + (1− f2)I

)(
λ1M + (1− λ1)I

)
.
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This is exactly what the proposition claims in this case, when level 2 is the highest

level in population.

Assume now that 2 is not the highest level. From the perspective of agents of

level-3, the average play of 0, 1 and 2 level of agents is given by

λ2M
(
λ1M + (1− λ1)I

)
+ (1− λ2)

(
λ1M + (1− λ1)I

)
=

=
(
λ2M + (1− λ2)I

)(
λ1M + (1− λ1)I

)
.

The first term in the first line multiplies the normalized fraction λ2 = f2/(f0+f1+f2)

to the best reply that agents of level-2 play (as we determined above), whereas the

second term in the first line puts the remaining weight to the average play of level-1

and 0 agents. (This, of course, can be split into two parts, (1 − λ2)λ1M = f1/(f0 +

f1 + f2)M represents the normalized play of agents of level-1 and (1−λ2)(1−λ1)I =

f0/(f0 + f1 + f2)I represents the normalized play of agents of level 0.) The level-3

agents’ best response is then M
(
λ2M + (1 − λ2)I

)(
λ1M + (1 − λ1)I

)
. If the level 3

is the highest level in population, we can complete the model, by weighting this best

response with f3 and putting the remaining weight 1−f3 to the average play of levels

0, 1 and 2 agents. This leads to the operator

H(3) = f3M
(
λ2M + (1− λ2)I

)(
λ1M + (1− λ1)I

)
+

+ (1− f3)
(
λ2M + (1− λ2)I

)(
λ1M + (1− λ1)I

)
=

=
(
f3M + (1− f3)I

)(
λ2M + (1− λ2)I

)(
λ1M + (1− λ1)I

)
.

This is exactly what the statement claims in this case, when level 3 is the highest

level in population.

Continuing in the same way we can prove the statement for any K.
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F Appendix (Not for publication). Additional In-

formation on Experiment

In this Appendix we collect extra information about our experiment.

Figure 6 shows a scatter plot of individual choices in period 1. The four panels

correspond to our four treatments. Every point correspond to one or more individuals

submitting a-guess as shown on the horizontal axes together with the b-guess as shown

on the vertical axes. The frequencies of the choices are indicated by the size of the

circles: the larger the circle, the more individuals submitted the corresponding pair

of guesses.

On top of this scatter plot (a sort of two-dimensional histogram) we superimpose

the lines indicating various levels of rationality as defined in Section 4.1. The thick

red lines correspond to the rational expectation choice (aNE, bNE). The other lines

indicate various levels of rationality: level 0, i.e., (50, 50) guesses, is shown by the thin

solid lines, level 1 is shown by the dashed lines, level 2 is shown by the dashed-dotted

line, and level 3 is shown by the dotted line.

The choice on the intersection of two lines corresponding to the same level of

rationality would indicate an individual consistency in levels of rationality for a and

b numbers. Inspection of Fig. 6 shows that even if the choices are quite dispersed,

there are few clear cases of consistency when participants apply level 0 to their both

choices or derive internal Nash equilibrium. For other levels of rationality we do not

observe such consistency.

Figs. 7 to 10 show the dynamics of average guesses for each session in treatments

Sink, SaddleNeg, SaddlePos, Source, respectively. The left panels show the time

evolution of ā (thick red line) and b̄ (thin blue line). The dashed lines show the levels

of internal equilibria, aNE = 90 and bNE = 20. The middle and right panels show the

same evolution as the phase diagram (the right panels shows the zoomed version of

the middle panel).

Figs. 11 to 14 show the dynamics of target values for each session in treatments

Sink, SaddleNeg, SaddlePos, Source, respectively. The left panels show the time

evolution of a∗ (thick red line) and b∗ (thin blue line). The dashed lines show the

levels of internal equilibria, aNE = 90 and bNE = 20. In the only equilibrium where

all participants guess the targets correctly, the targets would be on these levels. The

middle and right panels show the same evolution as the phase diagram (the right

panels shows the zoomed version of the middle panel). Note that targets may lie out

of the range [0, 100], and indeed this happens in treatments SaddlePos and Source.
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Source: 1st period

Figure 6: Frequencies of individual pair of guesses in period 1 and levels of reasoning
(different dashed lines) and internal Nash equilibrium (red thick line) for four experimental
treatments.
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Figure 7: Dynamics of the average values, ā and b̄, in the Sink treatment of the experiment.
Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed version).
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Figure 8: Dynamics of the average values, ā and b̄, in the SaddleNeg treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure 9: Dynamics of the average values, ā and b̄, in the SaddlePos treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).

67



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time period

0

20

40

60

80

100

av
er

ag
es

Source, Session 1: Averages

A-number
B-number

0 50 100
A-number

0

20

40

60

80

100

B
-n

um
be

r

Source, Session 1: Averages

0 20 40 60
A-number

20

25

30

35

40

45

B
-n

um
be

r

Source, Session 1: Averages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time period

0

20

40

60

80

100

av
er

ag
es

Source, Session 2: Averages

A-number
B-number

0 50 100
A-number

0

20

40

60

80

100

B
-n

um
be

r

Source, Session 2: Averages

0 20 40 60
A-number

20

30

40

50

60

B
-n

um
be

r

Source, Session 2: Averages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time period

0

20

40

60

80

100

av
er

ag
es

Source, Session 3: Averages

A-number
B-number

0 50 100
A-number

0

20

40

60

80

100

B
-n

um
be

r

Source, Session 3: Averages

0 50 100
A-number

20

30

40

50

60

B
-n

um
be

r

Source, Session 3: Averages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time period

0

20

40

60

80

100

av
er

ag
es

Source, Session 4: Averages

A-number
B-number

0 50 100
A-number

0

20

40

60

80

100

B
-n

um
be

r

Source, Session 4: Averages

0 50 100
A-number

20

25

30

35

40

45

B
-n

um
be

r

Source, Session 4: Averages

Figure 10: Dynamics of the average values, ā and b̄, in the Source treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure 11: Dynamics of the target values, a∗ and b∗ in the Sink treatment of the ex-
periment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure 12: Dynamics of the target values, a∗ and b∗ in the SaddleNeg treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure 13: Dynamics of the target values, a∗ and b∗ in the SaddlePos treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure 14: Dynamics of the target values, a∗ and b∗ in the Source treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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G Online Appendix (Not for publication). Dy-

namics of the adaptive models

In Section 5.3 we introduced the adaptive model. In this section we start with a more

general version of this model, when different adaptation rates are used for a and b

numbers. We obtain formal results on the properties of this model that, in the special

cases, lead to the results we used for the näıve and adaptive models in the main text.

Then, we illustrate the dynamics of the adaptive model of Section 5.3 for four various

values of parameter λ and discuss the qualitative properties of this model for our four

treatments; see Table 6 of the main text.

In the matrix form the general adaptive model can be written as(
āt
b̄t

)
= Λ

(
a∗t
b∗t

)
+ (I−Λ)

(
āt−1
b̄t−1

)
(G.1)

where we introduced diagonal matrix:

Λ =

(
λa 0

0 λb

)
.

Note that in this model different adaptation rates, λa and λb, are used for a and b

numbers. Such model can be obtained as a mixture of the homogeneous level-0 and

level-1 models, when it is assumed that distribution of agents across those levels of

rationality is different for a and for b numbers. We estimate such model in Section 6.

Substituting into (G.1) equation (5) that defines the target value, we obtain(
āt
b̄t

)
= (I−Λ + ΛM)

(
āt−1
b̄t−1

)
+ Λd (G.2)

Proposition G.1. Let us assume that matrix I−M is not invertible and λaλb 6= 0.

Then there exists a unique steady state of dynamics (G.2) given by (I−M)−1d.

Proof. Denote the steady state of the system as

(
āNE

b̄NE

)
. Then at the steady state

we have(
āNE

b̄NE

)
= (I−Λ + ΛM)

(
āNE

b̄NE

)
+ Λd ⇔ 0 = −Λ(I−M)

(
āNE

b̄NE

)
+ Λd
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As neither of λ1 and λ2 is zero, matrix Λ is invertible. Therefore we can simplify to

(I−M)

(
āNE

b̄NE

)
= d ⇔

(
āNE

b̄NE

)
= (I−M)−1d .

This proves the statement.

Therefore, the dynamics (G.2) has a unique steady state coinciding with the Nash

Equilibrium of our game (4). Dynamics of this model then can be written in deviations

from this steady state(
āt
b̄t

)
−
(
āNE

b̄NE

)
= M̃

((
āt−1
b̄t−1

)
−
(
āNE

b̄NE

))
.

with matrix M̃ = I − Λ + ΛM. The stability properties of the model can now be

expressed in terms of the elements of matrix M.

Proposition G.2. Consider dynamics (G.2) and assume that matrix M is lower

triangular. The steady state of the dynamics, (I −M)−1d, is globally stable if and

only if the following conditions are satisfied

−2 < λa(m11 − 1) < 0 and − 2 < λb(m22 − 1) < 0 , (G.3)

where m11 and m22 are the diagonal elements of matrix M.

Proof. The stability of the steady state depends on the eigenvalues of matrix

M̃ = I−Λ + ΛM =

(
1− λa + λam11 λbm12

λam21 1− λb + λbm22

)
.

Since matrix M is lower triangular, m12 = 0. Then, matrix above is also lower

triangular and its eigenvalues are

µ1 = 1− λa + λam11 and µ2 = 1− λb + λbm22

The standard condition for local stability is that both eigenvalues are less than 1

in absolute value. As our system is linear, these conditions are also necessary and

sufficient for the global stability of the steady state. This proves the statement.

With these results we obtain the results in Section 5. First, the näıve model, as

introduced in Section 5.1, is a special case of model (G.1) where λa = λb = 1. In this
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case matrix M̃ that governs the dynamics is simply matrix M that we used in the

experiment, and the eigenvalues are m11 and m22. This justifies Table 5.

Next, the adaptive model, as described in Section 5.3, is a special case of model

(G.1) with common λ = λa = λb. This justifies our focus on eigenvalues as in (13)

and results in Table 6. We will now discuss it in more details for each treatment.

The dynamics of the adaptive model is illustrated in Figs. 15 to 18 that compare

dynamics in the experiment with dynamics of the adaptive model with λ = 1 (i.e.,

näıve model), λ = 0.75, λ = 0.5, and λ = 0.25, respectively. For each case the

phase plots of experimental data in the first session of the corresponding treatment

(left panel) are compared with the simulated dynamics. In the middle panels the

initial conditions are chosen to be (50 50)′, i.e., they are the same in all treatments

and models. In the right panels the initial conditions are selected to be equal to the

average values in the first period in the corresponding experimental session.

We now discuss the results of qualitative dynamics of the adaptive model presented

in Table 6 for our four treatments.

Sink. In this treatment matrix M has eigenvalues m11 = 2/3 and m22 = −1/2. As

both are inside the unit circle, the eigenvalues of adaptive model (which are weighted

averages of 1 and eigenvalues of M, see (13)) are also inside the unit circle. Therefore,

the adaptive model will always converge. Variable a converges monotonically, and

when λ decreases from 1 (näıve model) to 0, the rate of convergence of a, given by

µ1 = 1 − λ/3 will be higher (so the convergence will be slower). Dynamics of b will

jump around the eigenvector v1 for λ > 2/3. See the upper panel of Figs. 15 and

16 for illustrations of such case. When λ < 2/3, both eigenvalues become positive

and dynamics does not jump through the eigenvector. It will then be monotone both

for a and b, with rate of both variables getting closer to 1 (i.e., slower convergence).

Compare the upper panel of Fig. 17 where λ = 0.5 and the upper panel of Fig. 18

where λ = 0.25.

SaddleNeg. In this treatment matrix M has eigenvalues m11 = 2/3 and m22 =

−3/2. Therefore, the first eigenvalue in the adaptive model will always be positive

and inside the unit circle. Thus dynamics of a is always monotonically converging.

Its convergence, whose rate is given by 1− λ/3, becomes slower with smaller λ. The

second eigenvalue will enter the unit circle when λ will be low enough. Thus the

steady state will gain stability with decrease of λ. Indeed, the dynamics become
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(globally) stable with

µ2 = 1− λ− 3

2
λ = 1− 5

2
λ > −1 ⇔ λ < 0.8 .

Thus in all illustrations in Figs. 16-18 the equilibrium is globally stable. When µ2 > 0,

i.e., when λ < 0.4, we will in addition have convergence without jumping through the

eigenvector v1, implying monotone convergence of b. This is well visible in Fig. 18

when λ = 0.25. When 0.4 < λ < 0.8, the dynamics of b converges to the equilibrium

and jumps through the eigenvector, implying that it may be consistent with the

experimental outcome.50 When λ > 0.8 the dynamics of b variable diverges. Given

that in our simulations we impose bounds as in (8), dynamics of b will be bounded

and its attractor will depend on precise value of λ.

SaddlePos. In this treatment matrix M has eigenvalues m11 = 2/3 and m22 = 3/2.

As in the previous two treatments, the first eigenvalue of the adaptive model is always

between 2/3 and 1. It guarantees monotone convergence of a. The second eigenvalue

is positive and outside of the unit circle. Therefore the eigenvalue µ2 of the adaptive

model will be outside of the unit circle for any λ. Dynamics of b will always be

unstable, except for a non-generic case, when it starts exactly at vector v1. This is

illustrated in the third row of Figs. 16-18. Note that rate of divergence is related to

the value of µ2 = 1 + λ/2. It increases with λ implying that divergence is faster for

larger λ. This also can be seen in illustrations. Finally, notice that since we impose

the same bounds in our simulation as in the experiment, see Eq. 8, we can compute

the final value of b. Indeed, since a converges to 90, dynamics of b̄t for large enough t

can be simplified to b̄t = −10λ+ (1 +λ/2)b̄t−1. From here we can see that if b̄t−1 = 0,

it will stay at this lower bound for the next period, and, hence, forever. The same

will happen with the higher bound. Thus, the attractors in the simulations are the

same as for the näıve model (see the last column in Table 5).

Source. In this treatment matrix M has eigenvalues m11 = 3/2 and m22 = −3/2

which are both outside of the unit circle. The eigenvalue µ1 associated with the dy-

namics of variable a will always be between 1 and 3/2, implying monotone divergence

from the steady state. In fact, in all simulations shown in Fig. 16-18 dynamics of a

diverges to 0. The rate of divergence is µ1 = 1 + λ/2 and thus the smaller λ is, the

50When λ > 0.4, the dynamics will jump through the eigenvector v1. However, this does not
necessarily mean that convergence will not be monotonic, as it depends on the initial conditions.
For example in the case of λ = 0.75 as shown in Fig. 16, the dynamics is not monotone, when it
starts at (50, 50) (second row, middle panel), but it is monotone when it starts in (27, 76, 21.41) as
in the experiment (second row, right panel). The same will be the case when λ = 0.5, see Fig. 17.
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Figure 15: Dynamics of averages in an experimental group (left panels) as compared
with the dynamics of the näıve model. First 15 periods are simulated using the näıve
model with initial point at (50, 50) (middle panels) and the point observed in the
experimental group (right panels). The two blue lines are the eigenvectors with the
arrows indicating whether the direction is stable or not.
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Figure 16: Dynamics of averages in an experimental group (left panels) as compared
with the dynamics of the adaptive model with λ = 0.75. First 15 periods are simu-
lated using the adaptive model with initial point at (50, 50) (middle panels) and the
point observed in the experimental group (right panels). The two blue lines are the
eigenvectors with the arrows indicating whether the direction is stable or not.
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Figure 17: Dynamics of averages in an experimental group (left panels) as compared
with the dynamics of the adaptive model with λ = 0.5. First 15 periods are simu-
lated using the adaptive model with initial point at (50, 50) (middle panels) and the
point observed in the experimental group (right panels). The two blue lines are the
eigenvectors with the arrows indicating whether the direction is stable or not.
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Figure 18: Dynamics of averages in an experimental group (left panels) as compared
with the dynamics of the adaptive model with λ = 0.25. First 15 periods are simu-
lated using the adaptive model with initial point at (50, 50) (middle panels) and the
point observed in the experimental group (right panels). The two blue lines are the
eigenvectors with the arrows indicating whether the direction is stable or not.
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slower dynamics diverge. The second eigenvalue of the adaptive model will be inside

the unit circle when

µ2 = 1− λ− 3

2
λ > −1 ⇔ λ < 0.8 .

For this λ dynamics of b will be closer and closer to the eigenvector v1. The “con-

vergence” towards this vector will be monotone (without jumping through it) for

λ < 0.4, see the last row in Fig. 18 where λ = 0.25. It will not be monotone for

λ > 0.4 (see the last rows in Figs. 16 and Figs. 17). The eigenvector v1 intersects

x = 0 line in the point y = 35 and it intersects x = 100 line in the point y = 18.333.

Thus if the dynamics of a diverges to 0, and b is already close to this vector at the

moment when a hits the lower bound, the value of b will be close to 35.51 However,

when a will hit the lower bound of 0, it will stay there forever. Then the dynamics

of b will be governed by equation bt+1 = (1 − 5λ/2)bt + 95λ, whose steady state is

y = 38. Instead, if the dynamics of a diverges to 100, then when b is close to this

vector at the moment when a hits the upper bound, the value of b will be close to

18.333. But when a will hit the upper bound of 100 and will stay there forever, the

dynamics of b will be governed by equation bt+1 = 45λ + (1− 5λ/2)bt, whose steady

state is y = 18.

51Note that this is very close to the value of 15th period in the experiment.
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H Online Appendix (Not for publication). Dy-

namics of moving average models

In Section 5.5 we introduced the moving average model with L lags. Figs. 19 to 21

compare the dynamics in the experiment with dynamics of the moving average model

with L = 2, L = 3 and L = 15 lags, respectively.
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Figure 19: Dynamics of averages in the experimental group (left panels) as compared
with the dynamics of the MAve(2) model. First 15 periods are simulated using the
moving average model with initial point at (50, 50) (middle panels) and the point
observed in the experiment (right panels).
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Figure 20: Dynamics of averages in the experiment (left panels) as compared with the
dynamics of the MAve(3) model. First 15 periods are simulated using the averaged
model with initial point at (50, 50) (middle panels) and the point observed in the
experiment (right panels).
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Figure 21: Dynamics of averages in the experiment (left panels) as compared with the
dynamics of the AveragedAll model with L = 15. First 15 periods are simulated
using the averaged model with initial point at (50, 50) (middle panels) and the point
observed in the experiment (right panels).
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Average model as recursive least squares

Generally, sample mean of a variable at with t ≥ 1 can be recursively expressed as

µt =
t− 1

t
µt−1 +

1

t
at = µt−1 +

1

t
(at − µt−1) .

In the average model, the mean of all past target values, µt−1 =
∑t−1

s=1 z
∗
s/(t− 1), is

used as the submitted number. Thus the model dynamics can be written as

z̄t = µt−1 = µt−2 +
1

t− 1
(z∗t−1 − µt−2) = z̄t−1 +

1

t− 1

(
d+ (M− I) z̄t−1

)
. (H.1)

Asymptotically, for large t, system (H.1) can be approximated by a dynamics in a

notional time of a continuous linear system of the ODE (see Ljung, 1977 and Evans

and Honkapohja, 2001 for technical details):

d

dτ
z̄τ = F (z̄τ ) = d+ (M− I) z̄τ .

The local stability condition of this system can be analyzed using the Jacobian matrix

of F at the fixed point (which coincide with the Nash equilibrium of our game). This

matrix is, of course, simply M − I and the eigenvalues (for lower triangular matrix

M are m11 − 1 and m22 − 1. The solution of ODE system is asymptotically stable,

if both these values are negative. This is the condition of asymptotic convergence of

the average model.
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I Online Appendix (Not for publication).

Parameter estimation and performance of learn-

ing model: robustness check

Models Parameter
Out-of-sample MSEs
Sink SadNeg Overall

NE - 221.16143 97.53310 159.34726

Näıve - 44.03442 25.00151 34.51797

Average

MAve(2) - 35.75808 23.14639 29.45224
MAve(3) - 36.57404 24.94528 30.75966
MAve(4) - 36.29821 29.37378 32.83599
MAve(5) - 39.01747 34.03913 36.52830
EWMA .66(.06) 37.98032 19.33101 28.65567

Level-k

0 (Stubborn) - 49.01650 59.20243 54.10947
1 (Näıve) - 44.03442 25.00151 34.51797
2 - 89.36464 153.33727 121.35095

Adaptive
λa = λb .61(.04) 32.29442 8.41438 20.35440
λa 6= λb .59(.07) .62(0.03) 32.48933 8.81117 20.65025

Mixed

0 1 (Adaptive) .39(.04) .61(.04) 32.29442 8.41438 20.35440
0 1 2 .39(.04) .61(.03) .00(.01) 32.29443 8.41440 20.35441
1 2 .86(.04) .14(.04) 48.51259 17.87918 33.19589
0 NE .77(.03) .23(.03) 38.93502 36.67750 37.80626
1 NE 1.00(.00) .00(.00) 44.03451 25.00151 34.51801
0 1 NE .39(.03) .61(.03) .00(.01) 32.29440 8.41439 20.35439
0 1 2 NE .39(.04) .61(.04) .00(.01) .00(.00) 32.29444 8.41439 20.35442
1 2 NE .86(.04) .14(.04) .00(.00) 48.51270 17.87917 33.19594

CH-Poisson max k = 5 1.01 (.16) 32.48609 18.95240 25.71925

Table 13: Estimation and performance of various learning models in terms of the
out-of-sample one-step-ahead MSE using leave-one-out procedure for Sink and Sad-
dleNeg data only. MSEs are computed for periods 2 to 15.
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Level 0 1 2 NE

Periods 1-15 0.48 0.50 0.03 0.00
(0.03) (0.04) (0.03) (0.00)

Periods 1 0.49 0.42 0.09 0.00
(0.04) (0.06) (0.06) (0.02)

Periods 2-15 0.39 0.61 0.00 0.00
(0.04) (0.03) (0.01) (0.00)

Table 14: Mixed model with levels 0, 1 and 2 and NE (internal Nash Equilibrium)
for different periods on the data from Sink and SaddleNeg treatments only. All
parameter estimates in bold significant at 5% level.
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